Scientists discover “anxiety gene” in the brain — and a natural way to turn it off

They see “huge potential” for it to lead to new anti-anxiety meds.

The discovery of an “anxiety gene” — and a natural way to turn it off — in the brains of mice could lead to new treatments for anxiety disorders, which are the most common type of mental illness in the world.

The challenge: While anyone can experience worry or dread, people with anxiety disorders experience those feelings pervasively and often for no identifiable reason.

Medications can relieve the symptoms of anxiety, but because we don’t really know what is going on in the brains of people with anxiety, finding the right drug or combination of drugs can be a time-consuming process of trial and error

The suppression of the gene appeared to provide stress relief and reduce anxiety-related behavior.

The anxiety gene: To understand what is happening in the brain to cause anxiety, a UK-led team of researchers restrained mice for 6 hours to induce a stress response and then analyzed the rodents’ brains on a molecular level.

This led to the discovery of increased levels of five microRNAs (miRNAs) — small molecules that help determine which genes in a cell are expressed and which aren’t — in the amygdala, the brain region implicated in anxiety.

When the researchers took a closer look at the miRNA that reached the highest levels, miR-483-5p, they saw that it suppressed the expression of the Pgap2 gene — and that this suppression appeared to provide stress relief and reduce anxiety-related behavior.

“miRNAs are strategically poised to control complex neuropsychiatric conditions such as anxiety,” said co-lead author Valentina Mosienko. “But the molecular and cellular mechanisms they use to regulate stress resilience and susceptibility were until now, largely unknown.”

“The miR483-5p/Pgap2 pathway … offers a huge potential for the development of anti-anxiety therapies.”

Valentina Mosienko

Looking ahead: If further research validates the finding in human brains, the discovery of this anxiety gene — and a natural way to put the brakes on it — could serve as a blueprint for treatments to help people with anxiety disorders.

“The miR483-5p/Pgap2 pathway we identified in this study, activation of which exerts anxiety-reducing effects, offers a huge potential for the development of anti-anxiety therapies for complex psychiatric conditions in humans,” said Mosienko.

We’d love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at tips@freethink.com.

Related
In a future with brain-computer interfaces like Elon Musk’s Neuralink, we may need to rethink freedom of thought
In a future with more “mind reading,” thanks to computer-brain interfaces, we may need to rethink freedom of thought.
“Universal” BCI lets anyone play games with their minds
A specially trained “decoder” slashes the time it takes a brain-computer interface (BCI) to read a user’s mind.
Psychedelic drugs and the law: What’s next?
The push to legalize magic mushrooms, MDMA, LSD, and other hallucinogens is likely to heighten tensions between state and federal law.
How patients are using technology to kick-start a healthcare revolution
Susannah Fox, former chief technology officer for the HHS, explains how technology can empower a patient-led healthcare revolution.
How much stress is too much? A psychiatrist explains
Some stress is good for you, but toxic stress, on the other hand, wears down your stress response system in ways that have lasting effects.
Up Next
Exit mobile version