Skip to main content
Move the World.
Pain Relief

Lead Image © Road Trip with Raj / Unsplash

Pain is, quite literally, all in our heads — when we experience a cut or burn, neurons near the site of the injury send signals to several parts of the brain, and it's only after the brain processes those signals that we feel pain.

Today, most people in need of pain relief turn to medications that hinder the body's ability to transmit and process these signals.

But researchers have now discovered a single part of the brain that appears to naturally stop pain in mice — and they think this "off-switch" could lead to more robust pain relief options in the future.

A New Way to Stop Pain

General anesthesia interrupts signals from pain receptors to the brain — something that's essential, obviously, during many medical procedures.

But we don't know exactly how or why these medications work. So in 2019, researchers from Duke University attempted to get to the bottom of the mystery by studying how the drugs affected the brains of mice.

They discovered that the anesthesia drugs not only inhibited certain neurons in the animals' brains — as expected — but also activated some neurons.

Mice appeared to experience immediate pain relief when the neurons were activated.

The Duke scientists theorized that these brain cells, dubbed "CeAga" neurons (for the central amygdala, where they're located, and the general anesthesia that activates them), could be part of the body's own system for managing pain.

In their new study, published in Nature Neuroscience on May 18, the scientists used custom brain mapping technology to track the parts of the brain that are activated by pain.

When the mice were made to feel pain, the CeAga neurons sent inhibitory ("off") signals to 16 parts of the brain that play a role in pain processing.

The scientists then turned to the question of whether they could deliberately activate this "off-switch" area to provide the animals with pain relief.

Lighting Up a Path to Pain Relief

To test their theory, the researchers genetically engineered mice so that they could activate their CeAga neurons using light.

This technique, known as "optogenetics," involves adding new genetic code to the neurons that cause them to produce light-activated proteins. The researchers could then trigger the CeAga neurons by shining a light on them.

We could one day have the ability to flip the off-switch for pain in our own brains.

Next, the scientists injected the modified mice with a solution known to trigger pain. As expected, the animals began intensely licking or rubbing the injection site — self-care behaviors related to pain.

When the researchers then used light to trigger the CeAga neurons, the animals appeared to experience immediate pain relief.

"It's so drastic," Wang said. "They just instantaneously stop licking and rubbing."

The researchers then dialed back the activity of the CeAga neurons, and the pain relief appeared to vanish — the animals went right back to licking and rubbing the injection site.

The researchers are now focused on finding a drug that will activate the CeAga neurons — but it's a long, long road from finding a control center in the brain to finding a drug that can trigger it.

Since we can't genetically modify humans to have light beams that turn off their pain centers, researchers must find a drug that activates just this one very precise brain area, can get past the blood/brain barrier, and doesn't have any toxic complications or side-effects.

And (always a big question mark) this switch needs to work the same way in human brains as it does in mice.

Still, if they're successful, we could have the ability to flip the off-switch for pain in our own brains.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Up Next

Medical Innovation
Can Green Light Therapy Cure Chronic Pain?
green light therapy
Medical Innovation
Can Green Light Therapy Cure Chronic Pain?
Scientists are finding that exposure to the color green, also known as green light therapy, could provide natural chronic pain relief.

Scientists are finding that exposure to the color green, also known as green light therapy, could provide natural chronic pain relief.

Dispatches
Neuroscientists Want to Beam Experiences Directly into Your Brain
Neuroscientists Want to Beam Experiences Directly into Your Brain
Dispatches
Neuroscientists Want to Beam Experiences Directly into Your Brain
It's a breakthrough for the blind and paralyzed, not the first step toward the Matrix. (Promise.)

It's a breakthrough for the blind and paralyzed, not the first step toward the Matrix. (Promise.)

Uprising
Diving Deep Into the Brain to Measure Neurotransmitters
Using computation psychiatry to study the brain
Uprising
Diving Deep Into the Brain to Measure Neurotransmitters
Researchers are taking the first measurements of neurotransmitters in active human brains, using computational psychiatry to understand how the mind works.

Researchers are taking the first measurements of neurotransmitters in active human brains, using computational psychiatry to understand how the mind works.

Dispatches
Personal Genetics Might Solve the Opioid Crisis – and the Pain Crisis
Personal Genetics Might Solve the Opioid Crisis – and the Pain Crisis
Dispatches
Personal Genetics Might Solve the Opioid Crisis – and the Pain Crisis
Why does pain hurt more for some people? Why do others feel nothing at all?
By Erin Young

Why does pain hurt more for some people? Why do others feel nothing at all?

Neuroscience
Scientists Test Mind Control with Light — No Surgery Required
mind control
Neuroscience
Scientists Test Mind Control with Light — No Surgery Required
In a new breakthrough, scientists use optogenetics to manipulate brain cells in mice without surgery or brain implants.

In a new breakthrough, scientists use optogenetics to manipulate brain cells in mice without surgery or brain implants.

Artificial Intelligence
The Most Impressive Language Generator Yet
language generator
Artificial Intelligence
The Most Impressive Language Generator Yet
OpenAI’s GPT-3 is currently the talk of Twitter. The powerful language generator is writing everything from sci-fi to code.

OpenAI’s GPT-3 is currently the talk of Twitter. The powerful language generator is writing everything from sci-fi to code.

Dispatches
UV Robots Can Sterilize an ICU in 10 Minutes
UV Disinfection Robots
Dispatches
UV Robots Can Sterilize an ICU in 10 Minutes
UV light destroys bacterial DNA from the inside out, eradicating the toughest pathogens in minutes.

UV light destroys bacterial DNA from the inside out, eradicating the toughest pathogens in minutes.

Dispatches
The Cost of Sucking Carbon Out of the Air Just Fell By 85%
The Cost of Sucking Carbon Out of the Air Just Fell By 85%
Dispatches
The Cost of Sucking Carbon Out of the Air Just Fell By 85%
It's not there yet, but carbon capture just got interesting.
Superhuman
Can Genetically Modified Pigs Be the Key to Treating Rare Diseases?
Can Genetically Modified Pigs Be the Key to Treating Rare Diseases?
Watch Now
Superhuman
Can Genetically Modified Pigs Be the Key to Treating Rare Diseases?
When it comes to rare diseases, doctors often don’t have enough patients to determine the effectiveness of various treatments. Now, scientists are breeding pigs with the same genetic code as people with a disease in order to create a pool of test "patients" unlike any before.
Watch Now

There are thousands of diseases known to modern medicine without any cure or treatment. Many are too rare to get much attention from doctors, governments, or drug companies. But the gene editing tool CRISPR is offering hope for people with rare and hard to study diseases, like the genetic disease known as NF1. There are tens of thousands of Americans with this tumor-causing nerve disease, but because it has over 4,000...