Scientists blow up their lab after creating strongest magnet ever

It's a record magnetic field, but... yeah. That didn't last long.

“With magnetic fields above 1,000 teslas, you open up some interesting possibilities,” lead researcher Takeyama explained. “You can observe the motion of electrons outside the material environments they are normally within. So we can study them in a whole new light and explore new kinds of electronic devices. This research could also be useful to those working on fusion power generation.”

The study, published in Review of Scientific Instruments, was released on September 17.

To achieve the record, the team used a technique known as electromagnetic flux-compression (EMFC). The instrument, which generates a low-strength magnetic field of 3.2 teslas, was attached to a row of capacitors that generate 3.2 megajoules, which is a huge amount of energy.

This compresses the magnetic field into a tiny area extremely quickly. But, as the team predicted, it can’t be compressed for long, eventually creating a shock wave that rips the instrument apart. They expected this to happen after about 700 teslas, as that’s what it was built to withstand. But incredibly, it reached 1,200 before exploding.

This image explains it a bit better, from the IEEE institute. “The University of Tokyo’s 1,200-Tesla magnetic field generator is powered by a bank of capacitors [on left, white] capable of storing 5 megajoules. The capacitors’ energy flows into the primary coil [bottom left, gray] and induces a counteracting current and magnetic field in the liner [orange]. This implodes the liner in 40 microseconds, compressing the magnetic field [bottom right].”

Watch it go boom

This article was reprinted with permission of Big Think, where it was originally published.

Related
MIT engineers design flexible “skeletons” for soft, muscle-powered robots
New modular, spring-like devices maximize the work of live muscle fibers so they can be harnessed to power biohybrid bots.
Six innovative ways to float skyscraper-sized wind turbines
While most offshore wind farms are firmly rooted in the seabed, engineers are developing new ways to float enormous wind turbines.
This startup is trying to solve lab-grown meat’s biggest problem
A biotech startup has developed a new kind of bioreactor that could help increase cultivated meat production.
Future nuclear power reactors could rely on molten salts — but what about corrosion?
Proton irradiation decreases the rate of corrosion in certain metal alloys — potentially good news for promising nuclear power reactors .
Why aren’t there solar-powered cars?
There are a number of reasons why solar-powered cars aren’t an option for everyday travel, at least not yet.
Up Next
LHC
Subscribe to Freethink for more great stories