Skip to main content
Move the World.
heart organoids

Lead Image Courtesy of Michigan State University

Heart defects are the most common kind of birth defect in humans — nearly 1% of babies are born with some sort of problem with either the structure or function of their heart.

To treat or prevent these congenital heart defects, researchers need to be able to study developing human hearts — but they can't ethically go into the womb and conduct tests on living fetuses.

They can study animal models, cell cultures, and donated fetal remains, but those options don't allow them to see an actual human heart developing from day one.

A new option might, though.

Researchers at Michigan State have revealed, in a yet-to-be-peer-reviewed study, that they've grown tiny, functional models of human hearts, also known as "heart organoids," from stem cells in the lab.

"Now we can have the best of both worlds, a precise human model to study these diseases — a tiny human heart — without using fetal material or violating ethical principles," researcher Aitor Aguirre said in a press release. "This constitutes a great step forward."

From Stem Cells to Heart Organoids

Researchers have already created organoids that mimic the function and structure of human lungs, kidneys, and brains, Recently, some have grown mini human heart pumps and even models of a human heart in cardiac arrest.

However, the MSU group's heart organoids are unique: they contain all of the developing human heart's primary cell types, as well as a functioning structure, including heart chambers and blood vessel-containing tissue.

After six days, the heart organoids began beating.

To create the mini hearts, the researchers started with donated adult skin or blood cells. They then genetically reprogrammed the cells back into their embryonic stem cell state, the way they were when they could still develop into any type of cell in the human body.

But the breakthrough was a new technique that coaxed the cells into developing into mini hearts. Six days in, the hearts began beating. By day 15, they were tiny spheres (about 0.4 inches in diameter) that contained all of the human heart's primary cell types and structures.

This follows the timeline of actual fetal heart development — meaning the researchers were seeing the first couple weeks of the process in real-time.

The Beat Goes On

The MSU researchers are now studying defects in their heart organoids, in the hope of finding ways to treat or prevent congenital heart disease.

They're also working to make their model more accurate.

"The organoids are small models of the fetal heart with representative functional and structural features," researcher Yonatan Israeli said. "They are, however, not as perfect as a human heart yet. That is something we are working toward."

Still, the organoids are already the most accurate lab-grown model of the developing human heart available, and according to MSU's paper, released on the preprint server bioRXiv, the process for creating them is simple, efficient, and scalable.

The paper still needs to undergo peer-review, but if the research holds up, MSU's heart organoids could give scientists an unprecedented look at the developing human heart — and a better understanding of all the things that can go wrong with it.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Up Next

Dispatches
Robots Are Mass Producing Mini-Organs
Robots Are Mass Producing Mini-Organs
Dispatches
Robots Are Mass Producing Mini-Organs
Robots can make hundreds of tiny copies of your organs, allowing doctors to test many different treatments at the...

Robots can make hundreds of tiny copies of your organs, allowing doctors to test many different treatments at the same time.

Science
Scientists Grew a Mini Brain in a Lab. It Has Human-Like Brain Waves.
Scientists Grew a Mini Brain in a Lab. It Has Human-Like Brain Waves.
Science
Scientists Grew a Mini Brain in a Lab. It Has Human-Like Brain Waves.
For the first time, a lab-grown mini brain has brain waves. Researchers can now launch new ways to study brain disorders. But the question of consciousness in the brain-like organoid could raise concern.

For the first time, a lab-grown mini brain has brain waves. Researchers can now launch new ways to study brain disorders. But the question of consciousness in the brain-like organoid could raise concern.

Medical Innovation
Scientists 3D Print a Heart Pump That Can Beat on Its Own
Heart Pump
Medical Innovation
Scientists 3D Print a Heart Pump That Can Beat on Its Own
Scientists 3D print a heart pump capable of beating on its own — and the organoid could have a big impact on heart research.

Scientists 3D print a heart pump capable of beating on its own — and the organoid could have a big impact on heart research.

Medical Innovation
This Adjustable Heart Valve Would Grow as a Child Ages
heart valve
Medical Innovation
This Adjustable Heart Valve Would Grow as a Child Ages
A new, prototype artificial heart valve can adjust to a child’s growing body, potentially sparing them from multiple open-heart surgeries before adulthood.

A new, prototype artificial heart valve can adjust to a child’s growing body, potentially sparing them from multiple open-heart surgeries before adulthood.

Superhuman
Father Makes 3D Heart for Daughter
Father Makes 3D Heart for Daughter
Watch Now
Superhuman
Father Makes 3D Heart for Daughter
When a father’s daughter was diagnosed with a heart disease, he set out to design an innovative 3D model of a heart that doctors could explore in virtual reality to save her life and thousands more.
Watch Now

Any father would do whatever it takes to save their child’s life. So when Steve Levine found out that his daughter was diagnosed with a congenital heart disease, he started thinking of any way he could help. The problem was that his daughter was born with reversed left and right ventricles, the weaker of which would run the risk of giving out as she aged. She had a pacemaker installed at age two, and doctors gave her...

Future of Medicine
Stem Cell Research Breakthrough Opens Path to Growing Human Organs in Animals
Stem Cell Research
Future of Medicine
Stem Cell Research Breakthrough Opens Path to Growing Human Organs in Animals
New stem cell research has revealed a way to coax human cells to grow to maturity in mouse models, a major advance in the field.

New stem cell research has revealed a way to coax human cells to grow to maturity in mouse models, a major advance in the field.

Medical Innovation
Human-Like "Organ Chips" Could Eliminate Animal Studies
organ chips
Medical Innovation
Human-Like "Organ Chips" Could Eliminate Animal Studies
To rapidly test for COVID-19 treatments without animal studies, researchers make a model human body out of “organ chips.”

To rapidly test for COVID-19 treatments without animal studies, researchers make a model human body out of “organ chips.”

Dispatches
A "LinkedIn for Cancer" Helps Myeloma Patients Find Help – and Hope
A
Dispatches
A "LinkedIn for Cancer" Helps Myeloma Patients Find Help – and Hope
The site aims to help scientists discover new treatments – and empower patients to advocate for their own care.
By Kaitlin Ugolik

The site aims to help scientists discover new treatments – and empower patients to advocate for their own care.