Skip to main content
Move the World.
Scientists Grew a Mini Brain in a Lab. It Has Human-Like Brain Waves. What Does That Mean for Research?

For the first time, a mini brain grown in a lab has produced detectable brain waves. Researchers hope that it can offer new ways to study brain disorders. But the brain-like "organoid" also raises difficult questions about when consciousness begins and where this research is going.

Brain waves are electrical impulses that traverse across neurons in the brain, conveying emotions, actions, and thoughts.

Alysson Muotri, a neuroscientist at the University of California, San Diego, grew over 100 mini brains in Petri dishes in his lab. The results of his study were published Aug. 29 in the journal Cell Stem Cell. Now he plans to study neurological disorders, like autism or epilepsy, using the mini-organs as a model. 

Brain organoids aren't new — scientists have been creating them for a decade — but, unlike previous brain surrogates, Mutori's have a functional, human-like neural network: a web of neurons that can transmit information across the brain. Mutori describes this as the "essence of brain activity."

Alysson Muotri, a neuroscientist at the University of California, San Diego, grew over 100 mini brains in Petri dishes in his lab. For the first time ever, these mini brains have a functional, human-like neural network: a web of neurons that can transmit information across the brain. Photo courtesy of UC San Diego.

Alysson Muotri, a neuroscientist at the University of California, San Diego, grew over 100 mini brains in Petri dishes in his lab. For the first time ever, these mini brains have a functional, human-like neural network: a web of neurons that can transmit information across the brain. Photo courtesy of UC San Diego.

For this reason, until now, brain organoids only came in handy when studying diseases that leave visible marks on the brain. For example, Honjun Song, a neuroscientist at the University of Pennsylvania who does not work with Mutori, demonstrated the usefulness of brain organoids to study the Zika virus. That virus causes microcephaly, a condition that stunts fetal brain development and causes children to be born with unusually small heads. Song mixed Zika with brain organoids and observed brain cell death resembling that in a microcephalic brain. 

But the possibilities of a lab-grown brain with a functional neural network are enticing. Many people suffer from neurological conditions, such as autism and epilepsy, which may leave the brain visibly intact. Psychiatric conditions like schizophrenia, bipolar disorder, or depression rarely show physical malformations. Instead, these conditions affect how the networks function — how neurons connect and send electrical impulses through the brain.

"The only way to really attack human conditions or diseases is to study the human brain,"

Alysson MuotriNeuroscientist at the University of California, San Diego

It takes a functioning brain to study neuron activity like that, but animal models fall short because human behaviors and brains are so different.

Muotri says that when we observe mouse behaviors and try to apply that to human behavior, we nearly always fall short. "The only way to really attack human conditions or diseases is to study the human brain," he says.

But studying a brain while someone is using it is either highly invasive or extremely limited. Data acquisition is slow, and there's only so much an fMRI of cerebral blood flow can tell us about what the brain is doing.

Growing mini brains on-demand — ones with actual brain waves — could enable researchers to rapidly carry out trials and test drugs that might lead to better treatments. Brain waves are electrical impulses that traverse across neurons in the brain, conveying emotions, actions, and thoughts.

The brain organoid is the size of a small pea.  Growing mini brains on-demand — ones with actual brain waves — could enable researchers to rapidly carry out trials and test drugs that might lead to better treatments. Photo by Erik Jepson courtesy of UC San Diego

The brain organoid is the size of a small pea. Growing mini brains on-demand — ones with actual brain waves — could enable researchers to rapidly carry out trials and test drugs that might lead to better treatments. Photo by Erik Jepson courtesy of UC San Diego

Growing mini brains on-demand — ones with actual brain waves — could enable researchers to rapidly carry out trials and test drugs that might lead to better treatments.

It took Muotri 10 months to raise his army of pea-sized organoids. He put human stem cells in a Petri dish, sprinkled in features of a brain-like environment, and stepped back to watch them grow.

After just two months, electrodes in the Petri dish detected brain waves. The scant signals were weak and infrequent, like an immature fetal brain. As the brain grew, Muotri measured an increase in brain waves. At six months, the electrical system jumped from 3,000 spikes per minute in one neuron to around 300,000, a number no one had seen before in a brain organoid. 

"I thought there must be something wrong. Maybe the electrodes were malfunctioning, or there's a short circuit somewhere," he says. When Muotri repeatedly observed the same data from different machines, he knew the brain waves were real.

Next, Muotri trained a machine-learning algorithm to measure the brain waves and compare them to data from 36 preterm babies obtained from hospital records. After nine months, the computer could no longer distinguish between data from a real human brain or a brain organoid. This demonstrated that the signal was very similar to that of a human brain.

After nine months, the machine could no longer distinguish between data from a real human brain or a brain organoid.

Song thinks Muotri's organoid is "a good start." It is a far cry from an actual brain, he says, since it is so tiny and missing so many components, but it is still progress. 

"This work really shows that the organoid has complex patterns of neural activity for future studies. They allow us to study whether (the brain waves) are altered in different diseases. We normally did not have access to study that," Song says. 

Human neurons from an autistic child.

Human neurons from an autistic child. Credit: Muotri Lab UCTV

Muotri is already on to his next step, using the mini brains for autism research, and he is also launching a company to make the organoids for commercial use, such as testing new drugs. He says it is possible to create a brain organoid with nearly any disorder that has a genetic factor, such as autism. He does this by growing the organoid with cell samples from someone with autism, thereby running their genetic code in the organoid.

“This work really shows that the organoid has complex patterns of neural activity for future studies. They allow us to study whether (the brain waves) are altered in different diseases. We normally did not have access to study that.”

But don't cue the creepy music, throw back your head, and scream, "It's alive!" just yet. Without a bloodstream or body for support, the tiny organoid can never grow to a full-sized human brain. Still, the new territory floats ethical questions within the research community. Does the brain organoid have a consciousness?

Does the brain organoid have a consciousness?

"The features are similar, but I would not say there is a functional brain in a dish, or anything close," Song says. 

Muotri agrees. He says that the wad of brain cells is far from a bonafide brain, but there is promise in this direction. So Muotri is holding a meeting this fall to bring together scientists and ethicists to discuss the possibility of consciousness in brain organoids, now or in the future.

“The ultimate goal of the research is to help millions and millions of people like any other technology. I think it's fair to stop, pause, and see where this is going. How far we can go?”

Alysson Muotri

“I don’t want the society to have the wrong impression that we’re creating these brains that can think and talk to you. We’re definitely not quite there yet,” he says. But even Muotri plans to proceed with caution. “The ultimate goal of the research is to help millions and millions of people, like any other technology. I think it’s fair to stop, pause, and see where this is going. How far we can go?”

Subscribe

Up Next

Future of Medicine
Unlocking the Mysteries of Muscles in Motion
Unlocking the Mysteries of Muscles in Motion
Future of Medicine
Unlocking the Mysteries of Muscles in Motion
New kirigami-inspired skin patch may help people avoid injury, as it expands our understanding of muscle activity.
By Caroline Delbert

New kirigami-inspired skin patch may help people avoid injury, as it expands our understanding of muscle activity.

Seachange
Ship’s Logbooks Are the First Records of Climate Change Data
Ship’s Logbooks Are the First Records of Climate Change Data
Seachange
Ship’s Logbooks Are the First Records of Climate Change Data
With the weather and ice data from old ship’s logs, Dr. Kevin Wood realized it was possible to reconstruct the history of sea ice in the Arctic to better understand climate change.

With the weather and ice data from old ship’s logs, Dr. Kevin Wood realized it was possible to reconstruct the history of sea ice in the Arctic to better understand climate change.

On the Fringe
Could Freezing Your Body Offer a Chance at Immortality?
freezing your body
On the Fringe
Could Freezing Your Body Offer a Chance at Immortality?
In a lab in Arizona, dozens of bodies sit preserved at 320 degrees below zero. They each paid $200,000 to be frozen...
By Blake Snow

In a lab in Arizona, dozens of bodies sit preserved at 320 degrees below zero. They each paid $200,000 to be frozen on the hope that, one day, medicine will advance far enough to once again bring them back from the dead.

Coded
Hacking the Future
Hacking the Future
Watch Now
Coded
Hacking the Future
How do we make sure the next generation of hackers uses their talents for good?
Watch Now

In our hyper-connected world, hacking is a superpower. And Nico Sell wants to make sure that power ends up in the right hands. She started Rootz Asylum to teach kids how to hack and encourage them to use their new-found talents for good.

What to Expect at the First Cyborg Olympics
Cyborg Olympics 2016
What to Expect at the First Cyborg Olympics
The event will seek to answer one of the most interesting technology questions of the early 21st century: How close...
By Mike Riggs

The event will seek to answer one of the most interesting technology questions of the early 21st century: How close are we to integrating humans with machines?

Superhuman
The World's Most Advanced Bionic Arm
The World's Most Advanced Bionic Arm
Superhuman
The World's Most Advanced Bionic Arm
A fascinating interview with Michael P. McLoughlin, the chief engineer of research and exploratory development at Johns Hopkins Applied Physics Lab.
By Mike Riggs

A fascinating interview with Michael P. McLoughlin about bionic arms for amputees and the world of advanced prosthetics. McLoughlin is the chief engineer of research and exploratory development at Johns Hopkins Applied Physics Lab.

Superhuman
Superhuman Trailer
Superhuman Trailer
Watch Now
Superhuman
Superhuman Trailer
Join us as we meet the innovators building our superhuman future.
Watch Now

Superhuman is a Freethink original series about the amazing advances in medical innovation that are making the present look more like a sci-fi depiction of the future. Join us as we meet the engineers, entrepreneurs, doctors and patients who are giving people a new lease on life today, while building our superhuman future of tomorrow.

COMING SOON
Superhuman Season 5 | Trailer
Superhuman Season 5 | Trailer
Watch Now
COMING SOON
Superhuman Season 5 | Trailer
Our best original series is back! Watch now for a look into our Superhuman future.
Watch Now

Superhuman is back with Season 5! Premiering Wednesday, August 7th, we'll be meeting the scientists, cyborgs, and real life heroes who are pushing the frontiers of groundbreaking medical technology. Can't wait until then? Get to know the Superhuman cast below. The Emerging Cyborg Meet Alec McMorris When his cousin’s car skidded into a guardrail on an icy Utah road in 2013, Alec McMorris rushed to...