Skip to main content
Move the World.
Malaria Parasite

Lead Image © Nataba / Adobe Stock

Five different parasites can cause malaria, but just one — Plasmodium falciparum — is responsible for most of the 200 million infections that occur every year.

Now, scientists have discovered a microbe that appears to prevent that common malaria parasite from infecting the primary transmitter of the disease: mosquitoes.

The microbe doesn't appear to harm the insects at all, either — meaning it could give us a way to stop the spread of malaria without disrupting the natural ecosystem.

Stopping a Malaria Parasite

While conducting field studies of mosquitoes in Kenya, scientists discovered the new microbe — Microsporidia MB — in the guts and genitals of about 5% of the bugs.

None of the mosquitoes with the microbe carried the most common malaria parasite, suggesting that it might protect the insects from infection.

Scientists fed the microbe-carrying mosquitoes infected blood. Afterwards, no malaria was detected.

To confirm their suspicions, the scientists fed the microbe-carrying mosquitoes infected blood in the lab. Afterwards, no malaria was detected in any of the mosquitoes with the microbe.

The team of researchers from the International Centre of Insect Physiology and Ecology (ICIPE) and the University of Glasgow published a paper on their microbe discovery in the journal Nature Communications.

"The data we have so far suggest it is 100% blockage," ICIPE researcher Jeremy Herren told the BBC. "It's a very severe blockage of malaria."

"It will come as quite a surprise," he added. "I think people will find that a real big breakthrough."

What We Know So Far

The scientists aren't certain why Microsporidia MB protects mosquitoes from the malaria parasite, but they do offer a couple of possibilities in their study.

One is that the microbe might be helping the insects' immune system somehow. Another is that it could be affecting their metabolism in a way that makes the insects an inhospitable host for malaria.

What they do know is that adult mosquitoes are able to pass the microbe between themselves. It's also inheritable, with female mosquitoes passing it on to their offspring at high rates.

Additionally, the microbe doesn't appear to cause any obvious harm to the mosquitoes, and infection appears to last for a mosquito's entire lifetime.

The scientists also determined that at least 40% of the mosquitoes in a region would need to be infected with the microbe to impact human malaria infections. Based on that knowledge, they are now exploring two possible ways to use the microbe discovery to help stop the spread of malaria in humans.

One is the mass release of the microbe's spores to infect a large population of mosquitoes at once. The other is the infection of male mosquitoes in the lab, which the scientists could then release to mate with (and infect) female mosquitoes.

A Better Approach to Malaria Control

This microbe isn't the only potential solution to the problem of malaria-transmitting mosquitoes, but it does have advantages over one of the most regularly discussed alternatives: genetic modification.

In recent years, a number of research groups have started exploring the possibility of genetically modifying some mosquitoes in a way that would make their female offspring infertile.

If we release those mosquitoes into the wild and let the genetic modification spread throughout the population, we could completely eradicate the species, proponents of the approach claim.

"We are very excited by its potential for malaria control."

Steven Sinkins

While simply killing all mosquitoes would, obviously, end their ability to infect people with any malaria parasite, it would also undeniably disrupt the ecosystem in ways that are impossible to predict.

Once we release the genetically modified mosquitoes into the wild, it'll be impossible to remove those altered genes from the population — nature would be permanently changed.

The use of this microbe to prevent the malaria parasite from spreading throughout mosquito populations — and subsequently lower infection rates in humans — would be far less risky because the microbes are already found in wild mosquitos.

"We are very excited by its potential for malaria control," University of Glasgow research Steven Sinkins told the BBC. "It has enormous potential."

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at tips@freethink.com.

Up Next

Dispatches
GMO Mosquitoes Could Be Our Best New Weapon against Disease
GMO Mosquitoes Could Be Our Best New Weapon against Disease
Dispatches
GMO Mosquitoes Could Be Our Best New Weapon against Disease
It sounds like science fiction, but it could save millions of lives.
By Jason Rasgon

It sounds like science fiction, but it could save millions of lives.

Dispatches
Mosquitoes Are the Deadliest Animals in History. Should We Wipe Them Out?
deadliest animal - the mosquito
Dispatches
Mosquitoes Are the Deadliest Animals in History. Should We Wipe Them Out?
The world's richest and poorest people are teaming up against our deadliest predator.

The world's richest and poorest people are teaming up against our deadliest predator.

Global Health
Can Mosquito-Repellent Clothes Stop the Deadliest Animal on Earth?
Can Mosquito-Repellent Clothes Stop the Deadliest Animal on Earth?
Global Health
Can Mosquito-Repellent Clothes Stop the Deadliest Animal on Earth?
The Four Horsemen of the Apocalypse are War, Death, Famine, and Pestilence — what Revelation doesn't tell you is...

The Four Horsemen of the Apocalypse are War, Death, Famine, and Pestilence — what Revelation doesn't tell you is that this last rider sits atop not a horse but a mosquito. The bane of your summer evenings is, in much of the world, a dangerous disease vector; mosquito borne diseases kill hundreds of thousands (and infect hundreds of millions) every year. Mosquitoes carry such dreaded diseases as malaria, yellow fever, West...

Dispatches
Zika Could Be a "Smart Missile" for Brain Cancer
Zika Could Be a
Dispatches
Zika Could Be a "Smart Missile" for Brain Cancer
Zika can devastate fetal brains; scientists want to turn it against brain tumors instead.

Zika can devastate fetal brains; scientists want to turn it against brain tumors instead.

Dispatches
CRISPR Can Diagnose Zika (and Ebola) with Just a Strip of Paper
CRISPR Can Diagnose Zika (and Ebola) with Just a Strip of Paper
Dispatches
CRISPR Can Diagnose Zika (and Ebola) with Just a Strip of Paper
We could be on our way to a fast, reliable, portable test for almost any virus or cancerous mutation.

We could be on our way to a fast, reliable, portable test for almost any virus or cancerous mutation.

Intel
The Future of Cancer Research
The Future of Cancer Research
Watch Now
Intel
The Future of Cancer Research
Intel's Bryce Olson used genomic sequencing to help fight his cancer. Now he’s helping researchers use artificial intelligence to discover entirely new cancer treatments.
Watch Now

Intel employee Bryce Olson was diagnosed with stage 4 prostate cancer. When the standard of care didn’t work, Bryce turned to genomic sequencing which allowed his doctors to identify specific genetic drivers of his disease and specific treatments and clinical trials that were a fit for his cancer. This precision medicine approach helped send his cancer into remission for several years. Now that his cancer has returned,...

Coded
The People’s NSA
The People’s NSA
Watch Now
Coded
The People’s NSA
Hackers and journalists team up to expose crime and corruption around the world
Watch Now

At an undisclosed location in Sarajevo, a group of hackers are working with journalists to expose organized crime and corruption. But those engaged in illicit activity respond with cyber attacks and other intimidation tactics. Can the group fight off the attacks and help journalists bring the truth to light?