Skip to main content
Move the World.
New Evidence Suggests Viruses May Trigger Alzheimer’s
An artist rendering of amyloid plaques breaking connections between neurons. Credit: NIH

Two new studies suggest that viruses may play a key role in causing Alzheimer's disease, triggering an immune overreaction in the brain that gradually leads to dementia and death. Old viruses tend to migrate to the brain as we age, and new research suggests that sometimes the brain's immune system freaks out, triggering a flood of "plaques" that trap, kill, or slow down the virus. But these plaques are also toxic to human brain cells, and too much can build up and destroy brain function.

This theory might clear up a lot of conflicting research about how Alzheimer's works, and perhaps explain the persistent failure of Alzheimer's drug development. Rather than merely trying to remove the plaques or stop their production, researchers are now hoping that antiviral treatments could stop the underlying infection in the early stages of the disease.

The Discovery

The idea that viruses cause Alzheimer's has long been dismissed as a fringe theory, and scientists only stumbled on the viral connection by accident. "Viruses were the last thing we were looking for," Dr. Joel Dudley of the Icahn School of Medicine told NPR. Instead, they were looking for genes that were different in the brains of Alzheimer's patients, hoping to find targets for new drugs.

Surprisingly, the biggest discoveries weren't in genes for brain function but in ones that help the immune system defend against viruses. Dudley's team took the hint and started searching for viral infections in the brains of Alzheimer's patients. They found levels of two types of herpesvirus that were twice as high in Alzheimer's patients as in healthy brains. Almost everyone carries these viruses (HHV-6 and HHV-7), which cause a minor childhood rash called roseola, but in Alzheimer's patients, they have migrated to the brain and "woken up" after decades of dormancy.

This discovery didn't prove that the viruses were at fault—they could have just been opportunistic infections, exploiting a weakened brain. But researchers also found that the viruses were interacting with the human genes known to increase the risk of Alzheimer's. That was a strong clue the infections weren't just bystanders.

The Experiment

Independently, a team at Harvard was planning a controlled experiment with another common herpesvirus, HSV-1, which causes cold sores. Tipped off by the Icahn team, they added HHV-6 to the trial. They found that mouse brains infected with these viruses produced a flood of amyloid-beta protein, as did "mini-brains" grown from human cells in a petri dish. This protein is what accumulates into the plaques clogging the brains of Alzheimer's patients, which most scientists believe are responsible for the disease.

Scientists used to think that amyloid-beta was just a waste product, but these researchers had previously found evidence that amyloid-beta is actually part of the brain's ancient immune system. And, in both the mice and the mini-brains, higher amyloid-beta levels helped fight off the infection by forming a sticky "nano-net" that trapped or killed the viruses.

But for some reason (probably related to both genetics and lifestyle), this defense goes haywire in Alzheimer's patients, flooding the brain with too much protein and forming the plaques that cause dementia. As one of the authors summed it up to Gizmodo, "The seeding of amyloid is what causes the deposition of plaque—and herpesviruses and other microbes can rapidly seed amyloid-beta."

The Upshot

The pipeline for new Alzheimer's drugs is slowly running dry, with fewer promising drugs in development each year. Several drugs have been found that can break up plaques and reduce levels of amyloid-beta in the brain, but for the most part, this hasn't translated into better cognitive performance or longer life. One recent drug trial seems to buck this trend, but the results are confusing—improvements in memory and cognition only happened at extremely high doses, and smaller reductions in amyloid actually seemed to accelerate patients' decline.

But the immune overreaction theory could tie together various strands of Alzheimer's research, including genetics, lifestyle, and the wildcard of infection. It could explain why it's so hard to predict who will develop Alzheimer's, and it might explain why reducing protein levels either doesn't stop the disease or has inconsistent results. If the underlying infection is still running rampant in the brain, reducing amyloid-beta could make matters worse, or it could just make things seem better in the short-run, the way that eliminating a fever can make you feel better while making the infection worse.

One of the lingering questions about this theory is what causes old viruses to suddenly go nuts when people start to enter old age. But whatever the reason, it might not matter too much when it comes to treatment, and researchers are hopeful that this theory will open up a whole new class of drugs and preventative therapies. Trials are being planned to test antiviral drugs on early-stage Alzheimer's patients to try to cool down infections that might be driving inflammation and plaque formation, and other possible treatments include vaccines or drugs that could moderate the brain's immune response to infection.

Explore More Stories

Go Deeper
Hope Grows for Patients with Spinal Cord Injuries
Hope Grows for Patients with Spinal Cord Injuries
Go Deeper
Hope Grows for Patients with Spinal Cord Injuries
Severe spinal cord injuries resulting in total paralysis are usually considered permanent, with no hope of recovery. And yet, in a handful of patients spanning multiple levels of severity, movement is being regained.

Severe spinal cord injuries (SCIs) -- often called complete injuries by clinicians -- are ones where no readable signal from the brain reaches the spinal cord beneath the trauma, resulting in total paralysis. The possibility that a patient with this type of severe injury might regain movement was once considered so remote that rehab has traditionally seemed a waste of time. And yet, in a handful of patients spanning...

Dispatches
Precision Medicine Cured an “Untreatable” Stage IV Breast Cancer
Precision Medicine Cured  an “Untreatable” Stage IV Breast Cancer
Dispatches
Precision Medicine Cured an “Untreatable” Stage IV Breast Cancer
Two years ago, she had two months to live.

Two years ago, she had two months to live.

Dispatches
Two Billion People Have TB. What Should We Do about It?
Two Billion People Have TB. What Should We Do about It?
Dispatches
Two Billion People Have TB. What Should We Do about It?
In the fight against TB, sometimes it's better to just get along.

In the fight against TB, sometimes it's better to just get along.

Dispatches
23andMe Can (Finally) Tell You about Your Genetic Cancer Risk
23andMe Can (Finally) Tell You about Your Genetic Cancer Risk
Dispatches
23andMe Can (Finally) Tell You about Your Genetic Cancer Risk
23andMe has won the right to tell you what your genes say about you. It's a landmark legal achievement that could...

23andMe has won the right to tell you what your genes say about you. It's a landmark legal achievement that could help usher in a new age of personalized medicine.

This is Our Superhuman Future
This is Our Superhuman Future
This is Our Superhuman Future
With Thanksgiving winding down, take some time to join us on a journey to the frontier of medical technology.
By Mike Riggs

With Thanksgiving winding down, take some time to join us on a journey to the frontier of medical technology.

Superhuman
Reversing Blindness
Reversing Blindness
Watch Now
Superhuman
Reversing Blindness
Vanna was legally blind. Now she can see. Hear her inspiring story and meet the amazing doctors who gave her back her sight.
Watch Now

Vanna started to notice a change in her vision. Six months later, she was legally blind. But Vanna never lost hope, and enrolled in an experimental clinical trial. Her doctors injected stem cells from her hip into her optic nerve. Afterwards, she started to regain her vision. Amazingly, Vanna can now see. This is the story of reversing blindness.

Superhuman
A Life Changed by Robotic Legs
A Life Changed by Robotic Legs
Watch Now
Superhuman
A Life Changed by Robotic Legs
Robert is paralyzed. But thanks to a robotic exoskeleton, he can walk again.
Watch Now

After an accident, Robert Woo was paralyzed from the chest down. Woo spent the next four years in a wheelchair and in therapy. But even as he learned how to live his new life, he couldn’t stop asking one very simple question: How could humans build skyscrapers, but not something better than a wheelchair? Then Woo heard about bionic exoskeletons. And it changed his life.

Superhuman
The 3D-printed helmet that can read your mind. Could it change the world?
The 3D-printed helmet that can read your mind. Could it change the world?
Superhuman
The 3D-printed helmet that can read your mind. Could it change the world?
OpenBCI has developed technology that allows you to control the world outside your body with your brain waves.
By Mike Riggs

OpenBCI has developed technology that allows you to control the world outside your body with your brain waves.