Smart stem cells made from fat have the power to heal

The cells can regenerate, lay dormant until needed, and be reprogrammed to act at stem cells.

New smart stem cells show a promising power to heal.

Researchers have reprogrammed human fat cells into adaptive smart stem cells that can lie dormant in the body until they are needed to heal various tissues. They demonstrated the cells’ effectiveness at healing damaged tissue in a mouse study.

To create the smart stem cells, the team from UNSW Sydney exposed human fat cells to a compound mixture. After about three and a half weeks, the cells lost their original identity and began acting like stem cells, or iMS (induced multipotent stem cells).

“The stem cells we’ve developed can adapt to their surroundings and repair a range of damaged tissues,” said UNSW hematologist John Pimanda, and co-author of the study, which they published in Science Advances.

“To my knowledge, no one has made an adaptive human multipotent stem cell before. This is uncharted territory.”

Next, they injected the experimental iMS cells into healthy mice to see how the cells would respond. The cells remained dormant for some time, but they activated when the mouse was injured. Because of the cells’ regenerative ability to act as “smart stem cells,” they transformed themselves into whatever tissue was needed to heal the injured mouse — like bone tissue, heart, or skin.

“The stem cells acted like chameleons,” said Avani Yeola, lead author on the study at UNSW Medicine & Health. “They followed local cues to blend into the tissue that required healing.”

All cells in a human body contain the same DNA. To differentiate between tissues, like a skin cell versus a bone cell, the cells only use a small portion of their total DNA. The rest of the DNA is shut down naturally by local modifications.

“The idea behind our approach was to reverse these modifications,” said Pimanda. “We wanted the cells to have the option of using that part of the DNA if there was a signal from outside the cell.”

Tissue-specific stem cells, like those that are restricted to becoming parts of the liver or lung, are limiting. But smart stem cells that can respond to their environment and become any tissue, like multipotent stem cells, will have many uses.

In the future, doctors could take a patient’s fat cells, incubate them with the compound, and inject them into the patient to heal heart damage or trauma injuries.

But applications like this could be a long way off. The team needs to do much more research to prove this is safe in humans for different kinds of trauma before it becomes a real therapy.

We’d love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Related
AI can help predict whether a patient will respond to specific tuberculosis treatments
Instead of a one-size-fits-all treatment approach, AI could help personalize treatments for each patient to provide the best outcomes.
When an antibiotic fails: MIT scientists are using AI to target “sleeper” bacteria
Most antibiotics target metabolically active bacteria, but AI can help efficiently screen compounds that are lethal to dormant microbes.
Scientists are deep-freezing corals to repopulate the ocean
Healthy corals could disappear by the 2030s if climate change is not curbed, so scientists are deep freezing specimens.
A protein found in human sweat may protect against Lyme disease
Human sweat contains a protein that may protect against Lyme disease, according to a study from MIT and the University of Helsinki.
Pacemaker powered by light eliminates need for batteries and lets the heart to function more naturally
Scientists designed a pacemaker that transforms light into bioelectricity, or heart cell-generated electrical signals.
Up Next
deep brain stimulation for ocd
Subscribe to Freethink for more great stories