Skip to main content
Move the World.
space mining

Lead Image Courtesy of the European Space Agency

One of the biggest barriers to space exploration — and, one day, colonization — is the cost of getting supplies from Earth's surface into orbit.

Every extra pound of payload exponentially increases the amount of fuel a rocket needs to escape Earth's gravitational pull (since the fuel also has to be lifted itself). That means higher mission costs, but sending people on a long mission without enough fuel, water, and food for the trip simply isn't an option.

There may be an alternative approach, though.

Instead of launching all the necessary supplies from Earth, we could use the resources already available in space — extracting water from the moon to create fuel, for example, or mining metal on Mars for building material.

This space mining is still hypothetical — but an experiment aboard the International Space Station (ISS) suggests that Earth's microbes may be able to help make it a reality.

Bio-Mining on Earth

The idea of using microbes for any kind of mining — let alone space mining — might seem bizarre, but it's actually already being done here on Earth.

Our planet's crust contains small deposits of what are known as rare earth elements (REEs), which we need for smartphones, computers, and other technology.

These elements are often found in tiny amounts, which makes mining them difficult. After breaking rock containing them into small pieces, miners add chemicals to separate out the metals, and those chemicals leave behind harmful byproducts.

Enter: bio-mining.

"We were surprised there was no significant effect of the different gravities on the bio-mining."

Charles Cockell

Some microbes are naturally adept at breaking down rock, separating it from other elements. So, rather than adding chemicals to smashed rock, some mining companies place it into tanks called bioreactors where these bacteria do their thing, making it easy for them to collect the desirable elements.

Not only is this better for the environment, it's often cheaper, more efficient, and requires less energy than the traditional chemical-based process.

Space Mining with Microbes

So, we know microbes can help out with mining on Earth — but what about space mining?

To find out, scientists at the University of Edinburgh spent a decade developing a special bioreactor about the size of a matchbox. They then sent 36 of them to the ISS for an experiment they dubbed BioRock.

All of the bioreactors contained a piece of basalt — a kind of rock that's common on the moon and Mars — and a liquid solution, but half also contained one of three types of bacteria.

Once the bioreactors reached the ISS, astronaut Luca Parmitano placed some of them in a centrifuge spinning at speeds that would mimic the gravity of either Earth or Mars. Others were left in the microgravity experienced onboard the ISS.

After three weeks, the bacteria were killed.

When the scientists checked to see which of the bioreactors showed the most separation of rare earth elements from the rock, they found that two of the bacteria did as bad or worse than the control liquid at extracting the elements.

However, one type, S. desiccabilis, extracted significantly more than the control solution under all three gravity conditions — in some cases, nearly 430% more.

"We were surprised that there was no significant effect of the different gravities on the bio-mining, given that microgravity is known to influence the behavior of fluids," researcher Charles Cockell told Space.com.

space mining bioreactors

The bioreactors in a centrifuge. Credit: European Space Agency

Building a Bigger Bioreactor

Now that the researchers know microgravity isn't a dealbreaker for bio-mining, their next goal is to identify the best bacteria for extracting the most useful elements found in asteroids, the moon, and Mars.

They're also looking forward to the delivery of a follow-up experiment, BioAsteroid, to the ISS in December. That one will test the ability of microbes to help with the extraction of elements from asteroid rock, instead of basalt.

Ultimately, they believe the bioreactor they've already developed could be scaled-up to support space mining — with a few adjustments.

"You would probably want to modify it — for example, by stirring the fluid and crushing the rock to improve its accessibility to the microbes," Cockell said, "but the basic idea would be the same."

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Up Next

The Future Explored
Can We Turn the Moon Into a Gas Station?
Can We Turn the Moon Into a Gas Station?
The Future Explored
Can We Turn the Moon Into a Gas Station?
NASA is looking to buy moon rocks from private companies. This lunar marketplace will spur the development of new technologies that can extract resources from the moon.

NASA is looking to buy moon rocks from private companies. This lunar marketplace will spur the development of new technologies that can extract resources from the moon.

Asteroids
Why NASA Just Landed a Spacecraft on the Asteroid Bennu
Bennu
Asteroids
Why NASA Just Landed a Spacecraft on the Asteroid Bennu
NASA has collected samples from the asteroid Bennu that could yield insights into everything from the origin of life to avoiding an asteroid impact on Earth.

NASA has collected samples from the asteroid Bennu that could yield insights into everything from the origin of life to avoiding an asteroid impact on Earth.

The New Space Race
What a Controversial Asteroid Mission Tells Us About U.S. Space Policy
What a Controversial Asteroid Mission Tells Us About U.S. Space Policy
The New Space Race
What a Controversial Asteroid Mission Tells Us About U.S. Space Policy
Billions spent on projects of questionable benefit - like the plan to capture an asteroid - raises the question:...
By Mike Riggs

Billions spent on projects of questionable benefit - like the plan to capture an asteroid - raises the question: Should NASA take a back seat in the 21st century space race?

Aerospace
What a Simulated Mars Mission Can Teach You About Life
simulated mars mission
Aerospace
What a Simulated Mars Mission Can Teach You About Life
After a simulated Mars mission, researchers come home with lessons we can all live by.

After a simulated Mars mission, researchers come home with lessons we can all live by.

Living in Space
Space Architects Are Building a Home to Live on the Moon
people on the moon
Living in Space
Space Architects Are Building a Home to Live on the Moon
The space architects of Saga have developed a habitat for people on the moon. Now they want to put it to the test in the endless arctic sun of Greenland.

The space architects of Saga have developed a habitat for people on the moon. Now they want to put it to the test in the endless arctic sun of Greenland.

Aerospace
A Sunblock to Save Martian Explorers from Radiation in Space
Radiation in Space
Aerospace
A Sunblock to Save Martian Explorers from Radiation in Space
Radiation in space is a major threat to astronauts’ health, but a new biomaterial could make space exploration a little less dangerous by blocking x-rays.

Radiation in space is a major threat to astronauts’ health, but a new biomaterial could make space exploration a little less dangerous by blocking x-rays.

Through the Looking Glass
Nature is Good for You. What About VR Nature?
VR Nature
Through the Looking Glass
Nature is Good for You. What About VR Nature?
Nature has the power to reduce stress and enhance our moods. Can VR nature experiences be a substitute for physically spending time in the outdoors?

Nature has the power to reduce stress and enhance our moods. Can VR nature experiences be a substitute for physically spending time in the outdoors?

The New Space Race
Tiny Satellites With a Huge Impact
Tiny Satellites With a Huge Impact
Watch Now
The New Space Race
Tiny Satellites With a Huge Impact
Many satellites are nearing the end of their life. This is what could be next.
Watch Now

Spire’s CubeSat satellites—each about the size of a shoebox—can collect and transmit weather data six times as often as the massive, billion-dollar satellites we’ve used for generations. But it doesn’t stop at weather prediction. Spire thinks their tech will be essential as humans journey deeper into deep space.