Skip to main content
Move the World.
synthetic mucins

Lead Image © lithiumphoto / Adobe Stock

In a delightful gimme for headline writers everywhere, researchers at MIT — including a Nobel Prize-winning chemist — have created artificial mucus that performs better than the real thing.

You may not have known that this gross goop has a function, or that it was in need of improvement, but it turns out that mucus is critical. 

The bodily secretion is nearly universal across animal species, and with good reason: beyond making sure wet and viscous surfaces stay wet and viscous, the long proteins that make up mucus, called mucins, have antibacterial properties as well.

"It's very cool. It does all these great things for us," MIT chemistry professor and senior author of the study Laura Kiessling told Forbes. "It's the layer that's separating our animal selves from the microbes."

Mucus = Pixie Dust

Mucins are long proteins that sprout feathery sugars, looking something like — as the researchers described it — a bottlebrush.

Those sugars, it turns out, make mucins much more than bacterial sticky traps. 

Kiessling's MIT colleague, biophysicist Katharina Ribbeck, helped uncover mucins' antimicrobial properties in 2019, telling the Washington Post that the mucins' sugars are so active they're "like pixie dust."

Among those activities when tested against the bacteria Pseudomonas aeruginosa: preventing the killing of other (helpful) microbes, jamming communication with its bacterial buddies, and stopping it from forming clumps and producing toxins. 

Essentially, mucins are less flypaper than brutal bacteria gauntlet.

Naturally, researchers set out to take advantage of mucins' array of microbe-discombobulating effects. 

The problem: those rococo arrangements of sugars are, like, tough to synthesize.

"Each mucin polymer has a long backbone consisting of thousands of amino acids, and many different glycans can be attached to these backbones," MIT News reports.

Cutting through the jargon: these are super complicated jigsaw puzzles, and there's a million different ways to fit the pieces together.

Kiessling and Ribbeck joined forces with Nobel Prize in Chemistry winner Richard Schrock for the study, published in ACS Central Science. Their approach was to focus on the mucins' backbone, not the sugars. 

They theorized that the long, snaking shape of natural mucins was the key to their antimicrobial properties.

"What we wanted to ask was, does the structure of the backbone matter at all?" Kiessling told Forbes.

Building Better Mucins

To make their mucins, the team used a chemical reaction called "ring-opening metathesis polymerization." 

You may not have known that this gross goop has a function, or that it was in need of improvement, but it turns out that mucus is critical. 

As MIT News explains, during this process a carbon-containing ring is opened up to form long, straight molecules that can be joined together — the future synthetic mucin backbone.

Schrock got his Nobel for his work creating catalysts to drive this type of reaction. It gets pretty complicated from here, but essentially two type of synthetic mucins can be made: "cis" and "trans" versions. The names refer to where the artificial molecules bond.

The team found that the cis versions of the mimic mucins looked more like natural ones, forming the long spines, while the trans versions formed clumps.

Mimetic mucuses in hand, they set out to see how the synthetic mucins stacked up to the real deal.

When the various mucins were exposed to the toxins created by Vibrio cholerae — the fiend behind cholera — the cis versions were not only more effective at capturing the toxin than the trans synthetics, they even outperformed the natural mucins. 

The cis synthetic mucins were more water soluble than the clumps, too. That water solubility may mean synthetic mucins could one day be included in topical moisturizers or eye drops.

Mucins are less flypaper than brutal bacteria gauntlet, and researchers want to take advantage of their array of microbe-discombobulating effects. 

Per MIT News, the team's next step is to study what happens when the mucins are armed with different assortments of sugars, which could lead to bespoke mucins for battling any number of bacteria.

"We would really like to understand what features of mucins are important for their activities, and mimic those features so that you could block virulence pathways in microbes," Kiessling told MIT News.

Synthetic mucins may eventually serve a role in battling superbugs, bacteria that are resistant to antibiotics, making them difficult to treat — to sometimes deadly effect.

"We're thinking about ways to even better mimic mucins, but this study is an important step in understanding what's relevant," Kiessling told MIT News.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected]

Up Next

Art
Stunning “Agar Art” Grows Pictures with Bacteria and Fungi
agar art
Art
Stunning “Agar Art” Grows Pictures with Bacteria and Fungi
Agar art lets scientists tap into their creative sides by growing microbes into beautiful bioart scenes in petri dishes.

Agar art lets scientists tap into their creative sides by growing microbes into beautiful bioart scenes in petri dishes.

The Brain
Deep Brain Stimulation: Explained
deep brain stimulation
The Brain
Deep Brain Stimulation: Explained
Deep brain stimulation is being studied as a treatment for any number of neurological and psychological conditions. But what is it, exactly?

Deep brain stimulation is being studied as a treatment for any number of neurological and psychological conditions. But what is it, exactly?

Health Care
MIT Can Now Monitor Your Sleeping Position With Radio Waves
sleeping positions
Health Care
MIT Can Now Monitor Your Sleeping Position With Radio Waves
A new sleep monitor out of MIT uses reflections from radio signals — not cameras or body sensors — to track a person’s sleeping positions.

A new sleep monitor out of MIT uses reflections from radio signals — not cameras or body sensors — to track a person’s sleeping positions.

Public Health
Blood Plasma From Coronavirus Survivors Could Save Lives
coronavirus survivors
Public Health
Blood Plasma From Coronavirus Survivors Could Save Lives
A drug company is using the blood plasma of coronavirus survivors to develop a treatment for those still battling the disease.

A drug company is using the blood plasma of coronavirus survivors to develop a treatment for those still battling the disease.

Dispatches
Babies Sometimes Trigger Preterm Labor to Escape Infections
Babies Sometimes Trigger Preterm Labor to Escape Infections
Dispatches
Babies Sometimes Trigger Preterm Labor to Escape Infections
A new discovery upends what we thought we knew about premature births and could point the way to entirely new...

A new discovery upends what we thought we knew about premature births and could point the way to entirely new solutions to prevent them.

On The Fringe
These Bacteria-Eating Sewer Viruses are Saving Lives
These Bacteria-Eating Sewer Viruses are Saving Lives
On The Fringe
These Bacteria-Eating Sewer Viruses are Saving Lives
The world discovered phages before antibiotics, but these lowly sewer viruses are getting renewed attention in the...
By Blake Snow

The world discovered phages before antibiotics, but these lowly sewer viruses are getting renewed attention in the age of antibiotic resistance.

Bionics
Adam Piore Introduces Us to Real Life Cyborgs
Our Cyborg Future is Coming (And That’s Not a Bad Thing)
Watch Now
Bionics
Adam Piore Introduces Us to Real Life Cyborgs
Hollywood loves to sensationalize merging the body with advanced tech. But will it really be so bad?
Watch Now

Thinking about cyborgs in real life typically conjures thoughts of pop culture works like The Matrix. Terminator. Bladerunner. Hollywood loves to sensationalize merging the body with advanced tech. But will it really be so bad? We sat down with Adam Piore, author of The Body Builders: Inside the Science of the Engineered Human to discuss why we should stop freaking out and embrace our cyborg future. Spend any amount of time...

Coded
How an Exiled Cryptographer is Protecting Journalists in His Native Ethiopia
How an Exiled Cryptographer is Protecting Journalists in His Native Ethiopia
Watch Now
Coded
How an Exiled Cryptographer is Protecting Journalists in His Native Ethiopia
An exiled blogger teaches journalists in his native Ethiopia how to avoid capture
Watch Now

In Ethiopia, the main prison is divided into eight zones. Many refer to the rest of the country as “Zone 9.” But Endalk Chala is fighting back. Chala moonlights as an encryption expert, helping bloggers in his native Ethiopia escape capture and torture.

Science
How to Rebuild a Broken Brain
How to Rebuild a Broken Brain
Science
How to Rebuild a Broken Brain
The unbelievable story of the day Jordan Riley was declared brain dead and his journey of re-learning how to be human.
By Mike Riggs

The unbelievable story of the day Jordan Riley was declared brain dead and his journey of re-learning how to be human.