Skip to main content
Move the World.
The 2018 Nobel Prize Could Mark a Turning Point in the War on Cancer
James P. Allison and Tasuku Honjo win the 2018 Nobel Prize in Physiology or Medicine for their foundational work on cancer immunotherapy. Credit: UT MD Anderson Cancer Center & Kyoto University, CC BY-SA

There are moments in the history of scientific achievement that benchmark the end of an era and the beginning of a new phase of reality for mankind.

The significance of these inflection points is sometimes readily apparent. NASA astronaut Neil Armstrong’s first step onto the surface of the moon on July 20, 1969, marked a new phase of space exploration. Other advances take many years for the historical significance to manifest, with an impact that appreciates over decades. That was the case with the development of the mechanized clock of the 15th century and the invention of the telephone in 1876.

Attempts to rid people of their cancer burden date back to 1600 B.C. when the disease was first recognized. But the idea of using a patient’s own immune system to eliminate aggressive cancers is more recent. Nobel laureate Paul Ehrlich first postulated that the immune system might control tumors more than 120 years ago. Since then, researchers have tried to boost the immune system to wipe out cancers.

This week, the 2018 Nobel Prize in Physiology or Medicine was awarded to James P. Allison and Tasuku Honjo for discoveries that have led to new medicines that activate the immune system and drive it to fight cancers. These therapies can defeat even the deadliest malignancies.

Allison and Honjo have revolutionized our understanding of how the immune system recognizes tumor cells and have created a paradigm shift in clinical oncology that will likely alter how we treat cancer for the foreseeable future.

Standard weapons for fighting cancer

Nobel winner James Allison talks about the impact of his invention.

To date, our best tools for treating aggressive cancers that have spread beyond the range of curative surgery have been radiation therapy and systemic chemotherapy agents.

For the most part these treatments kill rapidly dividing tumor cells by damaging their DNA or disrupting other essential cellular processes. This has led to most of the significant treatment advances we have achieved in terms of long-term survival in patients with advanced cancers.

I believe that soon cancer immunotherapy will equal, or rival, the impact of radiation and chemotherapy for patients diagnosed with cancer.

To understand the significance of Allison and Honjo’s discoveries, one must appreciate researchers have been trying to rally a powerful immune response against tumor cells for the past century. Prior to Allison and Honjo’s work, researchers believed that aggressive cancers grew unchecked because the immune response was too weak. The consensus was that if one could stimulate the immune system, it would respond and destroy the invasive tumor cells.

Immune checkpoints

Allison and Honjo, however, made a critical leap when they characterized two very important and potent pathways – called “immune checkpoints” – that can shut down the immune response. These pathways inhibit T cells – white blood cells that are charged with destroying virus-infected cells and tumor cells – and prevent them from “seeing” and attacking the tumor.

Allison and Honjo identified and characterized two different proteins, called CTLA-4 and PD-1, respectively, that sit on the surface of T-cells. When these proteins interact with matching proteins on tumor cells or other immune cells – the way a key fits a lock – the T-cells fall into “sleep mode” and don’t attack the tumor.

In many patients with cancer, these CTLA-4 and PD-1 pathways shut down anti-tumor immune activity. Without immune surveillance, the tumors grow and spread. This meant that our early attempts to activate the immune system were like trying to drive a car with the brake pedal pressed to the floor. No matter how we tried, or stepped on the gas, the brakes thwarted any progress.

But Allison and Honjo’s research led to the development of a new type of drug: monoclonal antibodies that block the regulatory pathways controlled by CTLA-4 and PD-1. These drugs, called immune checkpoint inhibitors, basically attach to the CTLA-4 and PD-1 proteins and prevent them from switching off the T-cells. These new antibody-drugs have led to dramatic tumor regressions. The results are so impressive that the FDA has approved their use for a variety of advanced cancers such as: metastatic melanoma, lung cancer, kidney cancer, bladder cancer, head and neck cancers, and other tumors.

Antibodies that block PD-1 and CTLA-4,
called immune checkpoint inhibitors, are
used in cancer immunotherapy to block
signals from tumor cells and other
regulatory cells. This activates the
immune system and leads to an increase
in T cells which then kill tumor cells.

Antibodies that block PD-1 and CTLA-4,
called immune checkpoint inhibitors, are
used in cancer immunotherapy to block
signals from tumor cells and other
regulatory cells. This activates the
immune system and leads to an increase
in T cells which then kill tumor cells. Credit: Lan Hoang-Minh, Ph.D., UF Brain Tumor
Immunotherapy Program, CC BY-SA

A new arsenal of checkpoint inhibitor drugs

The excitement surrounding cancer immunotherapy is due, in no small part, to the fact that these new medicines are revolutionizing how we treat advanced malignancies in which chemotherapy, surgery and radiation have failed. Furthermore, cancer immunotherapy has already become the preferred first option treatment for some cases of metastastic melanoma, the deadliest form of skin cancer. It is currently being evaluated as the first line option over traditional chemotherapy in other cancers.

CTLA-4 and PD-1 represent only the first two well-characterized immune checkpoints among an expanding list of targets that have been identified on immune cells and are believed important for modulating T-cell tumor fighting.

There are more than a dozen immune checkpoint inhibitors that have already entered clinical development and there are endless possibilities for combining these new inhibitors with those that have already been shown to improve clinical responses in treated patients.

The risks of unleashing the immune system

Although immune therapy is a breakthrough, it is not without risks to the patient. Taking the brakes off of the immune system can trigger undesirable and in some cases deadly consequences for patients treated with drugs. The killing power of the immune system is tightly regulated to protect normal cells from attacks that can damage critical tissues. Removing the brakes with immune checkpoint inhibitors can cause damaging inflammation in the skin, gut, heart, lungs and other vital organs. These risks can add up when these potent inhibitors are combined. And, the long-term side effects of immune checkpoint inhibition are not fully understood.

While the clinical responses to these treatments can be dramatic, long-term tumor regressions are achieved only in a minority (usually less than 20 to 30 percent depending on the tumor type) of treated patients. Also, the use of the PD-1 and CTLA-4 checkpoint inhibitors has not proven effective against all tumor types. In our own studies of malignant brain tumors, my colleagues and I have identified unique properties that make them resistant to immunotherapy and have begun to identify strategies for overcoming this treatment resistance.

Thus, we have much still to learn and significant room for improvement in order to maximize the benefits immunotherapy for all patients. Nonetheless, we have definitively entered a new era of clinical medicine with an accelerated progress in oncology treatments.

More than one in three individuals will be diagnosed with cancer during their lifetime. Despite our continued advances in cancer prevention and early detection, a significant proportion of these individuals will be faced with advanced disease. With continued rapid progress building on Allison’s and Honjo’s pioneering discoveries, it is increasingly likely that a patient’s own immune system will prove the most effective strategy and final defense against an advancing and relentless malignancy. The Conversation

Duane Mitchell is Professor of Neurosurgery at the University of Florida. This article was originally published on The Conversation.

Up Next

Criminal Justice
Algorithm Clears Thousands of Marijuana Convictions in Just One Minute
criminal record clearance
Criminal Justice
Algorithm Clears Thousands of Marijuana Convictions in Just One Minute
With this new system that identifies candidates for criminal record clearance and even auto-fills forms, offenders don’t even need to apply.

With this new system that identifies candidates for criminal record clearance and even auto-fills forms, offenders don’t even need to apply.

Longreads
Science Funding Is Wasting Young Careers. Here's How to Fix It.
science funding
Longreads
Science Funding Is Wasting Young Careers. Here's How to Fix It.
Basic science funding is a mess. Fixing it could radically improve the pace of innovation.

Basic science funding is a mess. Fixing it could radically improve the pace of innovation.

Dispatches
A Tumor-Killing Virus Could Treat Eye Cancer and Save Children's Sight
A Tumor-Killing Virus Could Treat Eye Cancer and Save Children's Sight
Dispatches
A Tumor-Killing Virus Could Treat Eye Cancer and Save Children's Sight
The only treatment for retinoblastoma is surgical removal of the eye—but scientists may have found another way:...
By Hemant Khanna

The only treatment for retinoblastoma is surgical removal of the eye—but scientists may have found another way: cancer-killing viruses.

An Address for Everywhere on Earth
An Address for Everywhere on Earth
Watch Now
An Address for Everywhere on Earth
Can three simple words change how we find each other?
Watch Now

We take addresses for granted - but billions of people and places don’t have them, and it’s a big problem. Whether it’s voting, disaster relief, or pinpointing a spot on festival grounds, not having an address makes things that should be simple difficult. Enter Chris Sheldrick, who coordinated events in the music industry where he was frustrated by address-related problems. He created What3Words, a method of dividing the...

What Is Cystic Fibrosis—And What Is It Like?
What Is Cystic Fibrosis—And What Is It Like?
What Is Cystic Fibrosis—And What Is It Like?
What you need to know about this genetic disease, explained by someone who knows it inside and out.
By Ella Balasa

What you need to know about this genetic disease, explained by someone who knows it inside and out.

INTEL
Saving Lives with AI
Saving Lives with AI
Watch Now
INTEL
Saving Lives with AI
Artificial intelligence can find hidden patterns in patient’s vital signs - and stop emergencies before they happen.
Watch Now

As hospitals collect more and more data, analyzing it is a challenge and an opportunity. Montefiore Medical Center of the Albert Einstein College of Medicine is a case study in how using artificial intelligence in hospitals can help improve outcomes. They’re working with Intel’s Healthcare AI team to develop machine learning algorithms that can see patterns within it. The result, which they call the Patient Centered...

Dispatches
Zika Could Be a "Smart Missile" for Brain Cancer
Zika Could Be a
Dispatches
Zika Could Be a "Smart Missile" for Brain Cancer
Zika can devastate fetal brains; scientists want to turn it against brain tumors instead.

Zika can devastate fetal brains; scientists want to turn it against brain tumors instead.

Dispatches
The Cause (and Possible Cure) for Most Infertility
The Cause (and Possible Cure) for Most Infertility
Dispatches
The Cause (and Possible Cure) for Most Infertility
Fertility medicine may be on the edge of a breakthrough.

Fertility medicine may be on the edge of a breakthrough.

Dispatches
We Found the Oldest Human Virus: It's Familiar (but Weird)
Ancient Human Viruses Weird and Familiar
Dispatches
We Found the Oldest Human Virus: It's Familiar (but Weird)
The discovery cracks open a 7,000-year history of human-virus warfare. And it's raising weird questions.

The discovery cracks open a 7,000-year history of human-virus warfare. And it's raising weird questions.

Aflac
The Robot Duck Helping Kids With Cancer
The Robot Duck Helping Kids With Cancer
Watch Now
Aflac
The Robot Duck Helping Kids With Cancer
Nation of Artists and Freethink are proud to partner with Aflac, Sproutel and Carol Cone On Purpose for the launch...
Watch Now

Nation of Artists and Freethink are proud to partner with Aflac, Sproutel and Carol Cone On Purpose for the launch of My Special Aflac Duck, a social robot designed to bring comfort and joy to kids with cancer, and already the winner of the Tech for a Better World Innovation Award at CES 2018, Engadget’s official Best of CES Awards for Best Unexpected Product, and the CES Showstoppers Award for Best Robotics.