Researchers have found a way to pull more than 95% of uranium from seawater

The new material may make marine uranium extraction economically feasible.

Nuclear energy is capable of creating vast amounts of power without carbon footprint-stomping emissions (there are some byproducts we need to deal with, but that’s what nuclear tombs are for, right?) at a scale and consistency difficult to match with wind and solar. 

But there’s barriers to widespread, French-style adoption of nuclear power beyond public perception, political will, and thousand-year nuclear waste: fuel.

The power behind nuclear power comes from rending uranium atoms; a tiny amount of the element unleashes energy many magnitudes greater than other fuel sources. 

Uranium occurs naturally in rocks, soil, and water, but is generally extracted at scale from uranium mines — which is considered a finite resource. 

There’s another source of uranium, a vast source: the ocean. The trick is getting it out.

Nuclear power requires uranium, which is considered a finite resource.

Now, a team of researchers at the Indian Institute of Science Education and Research (IISER) in Pune have created a gel that pulls over 95% of uranium from seawater.

Their technique “introduces the concept of extracting uranium from natural seawater may lead to an unlimited supply of uranium at an economically affordable cost,” principal investigator and IISER chemistry professor Sujit K. Ghosh told IndiaToday.in.

Getting uranium from seawater: Researchers estimate that there is roughly 4 billion tonnes of uranium in seawater. But pulling uranium from seawater with enough efficiency that it makes economic sense is difficult.

Because it is found in such low concentrations, pulling uranium from seawater at scale hasn’t been economically feasible, Reid Peterson of the Pacific Northwest National Laboratory (PNNL), told New Scientist in 2021.

Researchers around the world, including at PNNL, have been grinding away at that bottom line. A team of researchers at the Chinese Academy of Sciences in Beijing created a polymer membrane with a structure similar to blood vessels that absorbed 20 times the uranium previous materials had, according to New Scientist.

And the advances keep coming.

Uranium occurs naturally in rocks, soil, and water, but is generally extracted at scale from mines. There’s another source of uranium, though, a vast source: the ocean. But the trick is getting it out.

A new way: The IISER team’s new technique for pulling uranium from seawater uses an “ionic macroporous metal-organic framework.”

Metal-organic frameworks (MOFs) combine metal ions and organic chains linking them together. They also make for excellent sponges.

“MOFs are perhaps most famous for their extraordinary porosity and surface area,” Johns Hopkins chemists wrote in a Communications Chemistry article.

IISER’s MOF was able to pull 96.3% of uranium from natural seawater samples in just two hours, Ghosh told The Indian Express. The team took seawater from the Arabian Sea, off the coast of Mumbai.

“Combined with exceptional selectivity, record capacity, ultrafast kinetics, and long service life, this material could be a potential candidate for the efficient extraction of uranium from natural seawater,” Ghosh told IndiaToday.in.

We’d love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Related
MIT engineers design flexible “skeletons” for soft, muscle-powered robots
New modular, spring-like devices maximize the work of live muscle fibers so they can be harnessed to power biohybrid bots.
Desalination could avert one of the top 10 threats facing the world
Desalination — changing seawater into safe drinking water — could avert a crisis. Here’s how to make it less costly and labor-intensive.
Six innovative ways to float skyscraper-sized wind turbines
While most offshore wind farms are firmly rooted in the seabed, engineers are developing new ways to float enormous wind turbines.
This startup is trying to solve lab-grown meat’s biggest problem
A biotech startup has developed a new kind of bioreactor that could help increase cultivated meat production.
Scientists have invented a method to break down “forever chemicals” in our drinking water
Researchers have discovered a way to eliminate “forever chemicals,” or PFAS, which usually take hundreds or thousands of years to break down.
Up Next
e-bike conversion kit
Subscribe to Freethink for more great stories