Skip to main content
Move the World.
deep sea fish

Lead Image © Karen Osborn, Smithsonian

Almost a mile below the surface, in the lung-crushing abyss of the ocean, deep-sea fish move stealthily through their forever night. With their black skin absorbing nearly all of the light that strikes it, the fish — nearly impossible to see at depth — appear to cut a hole in reality, making them difficult to photograph even when brought to the surface.

"It didn't matter how you set up the camera or lighting — they just sucked up all the light," zoologist Karen Osborn of the Smithsonian National Museum of Natural History told Duke Today.

Researchers from Duke, the Smithsonian, and the Monterey Bay Aquarium Research Institute found that at least 16 species of deep-sea fish possess this kind of ultra-black skin. The skin, they write in Current Biology, has evolved as a unique form of camouflage for a unique environment.

deep sea fish

The ultra-black and awesomely named Pacific blackdragon was the second darkest fish studied. Credit: Karen Osborn, Smithsonian

In the midnight zone of the deep ocean, there's few places to hide. And while there's no sunlight that can give deep-sea fish away, there are light sources: bioluminescent organisms who create their own eerie light.

Typical forms of ocean camouflage, like being transparent or mirrored, would make a deep-sea fish rather conspicuous, the researchers write; in response, some deep-sea fish have gone the completely opposite direction, instead evolving ultra-black skin that sucks up — not scatters — light.

The team pulled 39 black deep-sea fish from up to a mile beneath Monterey Bay and the Gulf of Mexico. Using a spectrometer, they identified 16 species that reflect less than .5% of light. These ultra-black fish, Duke Today says, are roughly 20x darker and less reflective than your typical black object.

"Ultra-black arose more than once across the fish family tree," Alexander Davis, a biology Ph.D. student at Duke and first author of the study, told Duke Today.

A tiny anglerfish, shorter than a pen cap, was the darkest deep-sea fish they found. The little fellow devoured light, reflecting back only .04% of light to the eye. Only one other type of animal can absorb light like this, Duke Today reports: the weird as hell birds-of-paradise from New Guinea, with their ultra-dark plumage. The fish out-pace ultra-black butterflies and (shudder) super-black jumping spiders.)

The deep-sea fish owe their camouflage to the structure of their skin, the researchers say. Both normal black and ultra-black skin contain minute structures in their cells, called melanosomes. These contain the melanin that gives the skin its color. 

But the melanosomes of ultra-black fish are different than just normal black fish; under an electron microscope, the researchers found them to be larger and more tightly packed together.

Rather than the pearl-shaped, spaced-out melanosomes of other black-skinned, cold-blooded creatures, ultra-black deep sea fish have melanosomes that are more akin to Tic-Tacs, packed so tight they are nearly an unbroken veil.

Ultra-black deep-sea fish skin cells are "like a tiny gumball machine, where all of the gumballs are of just the right size and shape to trap light within the machine," Davis said.

deep sea fish

The common fangtooth. Credit: Karen Osborn, Smithsonian

It's sort of the natural equivalent of the nanotubes that absorb light for the freakishly dark pigment vantablack, or MIT's accidentally made, ten-times-darker material (responsible for one of my favorite pieces of art, Diemut Strebe's The Redemption of Vanity — someone buy it for me, please!).

The simple design and optimal shape of the ultra-black deep-sea fish skin cells may help inspire the creation of new, synthetic ultra-black materials, the authors write. Super light-absorbing materials could lead to improved solar panels and telescopes, among whatever other uses scientists — and artists — can dream up.

I, for one, am all for more fabric-of-reality hole cutting.

Up Next

Innovation
The Edible Six Pack Ring That's Saving Marine Animals
The Edible Six Pack Ring That's Saving Marine Animals
Watch Now
Innovation
The Edible Six Pack Ring That's Saving Marine Animals
18 billion pounds of plastic are dumped in the ocean every year. This microbrewery created biodegradable six pack rings to help stem the tide.
Watch Now

Saltwater Brewery was a regular microbrewery that made great craft beer - packaged with the usual plastic six pack rings. As fishermen who saw firsthand the amount of plastic pollution in the ocean, though, they felt they needed to make a change to help marine animals. They came up with the idea to create edible six pack rings made of biodegradable materials left over from the brewing process. Now, they’ve created a new...

Future Forward
Exploring the Ocean Floor with Autonomous Underwater Vehicles
AUV
Future Forward
Exploring the Ocean Floor with Autonomous Underwater Vehicles
Efficient, autonomous, and economical, the AUV is quickly becoming essential for underwater research.

Efficient, autonomous, and economical, the AUV is quickly becoming essential for underwater research.

Marine Life
3D-Modeling is Changing How We See Deep Sea Corals
Photogrammetry corals
Marine Life
3D-Modeling is Changing How We See Deep Sea Corals
We don’t understand deep sea coral reefs. Photogrammetry is the first step to unlocking their significance.

We don’t understand deep sea coral reefs. Photogrammetry is the first step to unlocking their significance.

Below the Surface
Removing Water From Underwater Photography
Removing Water From Underwater Photography
Below the Surface
Removing Water From Underwater Photography
A new algorithm for underwater photography makes marine life appear as clear as it would on land, and it’s helping scientists understand the ocean better.

A new algorithm for underwater photography makes marine life appear as clear as it would on land, and it’s helping scientists understand the ocean better.

Fertility
How GMO Zebrafish Could Inspire New Infertility Treatments
zebrafish  Infertility Treatments
Fertility
How GMO Zebrafish Could Inspire New Infertility Treatments
By genetically modifying zebrafish, researchers have discovered a sex hormone that could lead to future infertility treatments for humans.

By genetically modifying zebrafish, researchers have discovered a sex hormone that could lead to future infertility treatments for humans.

Oceans
This Underwater Base Could Become the ISS of the Ocean
Underwater Base
Oceans
This Underwater Base Could Become the ISS of the Ocean
Aquanaut Fabien Cousteau has announced plans to build Proteus, the world’s biggest underwater base for scientific research.

Aquanaut Fabien Cousteau has announced plans to build Proteus, the world’s biggest underwater base for scientific research.

Future of Food
GMO Salmon Could Forever Change the Way We Produce Food
It’s Time to Embrace the Frankenfish
Watch Now
Future of Food
GMO Salmon Could Forever Change the Way We Produce Food
Would you eat fish that was genetically designed in a lab? What if it was your only option? Like it or not, GMO salmon and other futuristic foods are revolutionizing the global food system right in front of our eyes.
Watch Now

Bioengineered fish have been known to cause mixed feelings. Unnatural, right? Well, after 30 years of debate on whether we should be eating “Frankenfish,” this funky food source is finally coming to a store near you. Like it or not, GMO salmon and possibly other genetically engineered animal meats will soon be on the shelves of your local supermarket. And, these new futuristic foods may be revolutionizing the global food...

Sustainability
What Is the Future of Wave Energy?
wave energy
Sustainability
What Is the Future of Wave Energy?
The Federal Energy Regulatory Commission has approved the first commercial-scale, utility grid-connected test site for wave energy.

The Federal Energy Regulatory Commission has approved the first commercial-scale, utility grid-connected test site for wave energy.

Languages
Bringing Lost Languages Back To Life With AI
Lost Languages
Languages
Bringing Lost Languages Back To Life With AI
An algorithm that can identify the closest living relatives of lost languages could help linguists unlock the meaning of ancient texts.

An algorithm that can identify the closest living relatives of lost languages could help linguists unlock the meaning of ancient texts.