Skip to main content
Move the World.
FDA Approves First Mute Button for Genetic Diseases
Credit: Jeremy Keith

The FDA has just approved a breakthrough genetic treatment, a first of its kind therapy that silences a gene that causes amyloidosis and nerve damage. The treatment relies on RNAi, or "interfering" RNA, to block certain strands of DNA from being translated into proteins. Unlike traditional gene therapy, the technique doesn't remove or alter the underlying mutation, but it effectively "mutes" it so it can't do any damage.

Developed by Alnylam Pharmaceuticals, this is the first time that the technique has been approved to treat disease in humans, but scientists have used it for years to "knock down" genes in mice in order to model various diseases. The potential upside for therapies with RNAi is huge, which is why its discoverers won the Nobel Prize for Medicine in 2006. This is likely to be the first of many advanced treatments to deploy the technique. It also has widespread potential applications in agriculture, from suppressing natural toxins and allergens in crops to targeting pests and weeds.

How to Build Stuff (Or Not)

To wildly oversimplify things, your body is made of cells, and cells are made of proteins. To make proteins, cells use a molecule called RNA to carry instructions from your DNA to protein factories called ribosomes. RNA translates DNA from abstract code into specific instructions for assembling proteins.

Many types of genetic disease (whether inherited or developed later in life) are caused by cells making the wrong kind of protein—maybe it's misshapen, or toxic, or in the wrong organ, or there's simply too much of it. Traditional pharmaceuticals use chemical compounds to block the protein from doing its job, break it down, or suppress it from being made. But hitting the right target in complex chemical reactions is extremely challenging, and it can take literally decades of trial and error to find the right chemical.

Gene therapies try to go right for the source, by deleting or replacing the mutated DNA that has the bad protein instructions. But your cells really don't like anything messing with your DNA (for very good reason), so it's turned out to be difficult to edit enough cells (potentially billions of them) to make a dent in many diseases.

A Third Way

When pharmaceuticals and biotech fail, there's another approach, right in the middle: cut off RNA messengers before they can turn DNA into proteins. Fortunately, your body already has a process for doing this, called RNA interference (RNAi). Why would cells want to interfere with their own RNA? Often, it's just another way to control the rate of protein production, but it can also be a defense mechanism against viruses that try to sneak their RNA into the cell to hijack its protein machinery.

RNAi is a highly complex process, but fundamentally, it's a way to shred RNA before it can be translated into protein. Researchers have used the technique successfully to silence gene expression in mice to simulate diseases and then test treatments, and there's a number of applications in the works for modifying crops to remove natural allergens or toxins. In 2006, the discoverers of RNAi won the Nobel Prize in Medicine, and the 12 years since have been a race to develop and commercialize a new class of drugs based on their breakthrough.

The Drug

Alnylam won that race this month, and their therapy will be the first to use RNAi to treat disease in humans. The FDA approved only a very narrow use of the drug, treating neuropathy or nerve pain caused by a rare hereditary form of amyloidosis. But some experts believe that it could eventually be approved for treating heart damage, another serious effect of amyloidosis, and even the non-hereditary forms of the disease, which are still ultimately caused by the overproduction of amyloid protein.

The company has three other RNAi drugs in the pipeline, likely headed for approval soon, intended to treat causes of high cholesterol, porphyria, and hemophilia. FDA Commissioner Scott Gottlieb made optimistic comments about the future of RNAi therapies in his press release announcing the drug's approval: "This approval is part of a broader wave of advances that allow us to treat disease by actually targeting the root cause, enabling us to arrest or reverse a condition, rather than only being able to slow its progression or treat its symptoms."

"New technologies like RNA inhibitors,
that alter the genetic drivers of a
disease, have the potential to transform
medicine."

Scott GottliebFDA Commissioner

This drug, the crest of that wave of innovation, will come at a steep price—nearly $350,000, even after discounts. At that price, Alnylam hopes to rapidly recoup its estimated $2.5 billion investment in research and development, but insurance companies and governments will likely balk at the cost. It remains to be seen if these treatments can become either widespread or cost effective with mid-six-figure sticker prices.

Up Next

Space Exploration
Is Anybody Out There?
Exoplanet Discovery
Space Exploration
Is Anybody Out There?
New breakthroughs in the technology used for exoplanet discovery mean we could find proof for the existence of extraterrestrials in our lifetime.

New breakthroughs in the technology used for exoplanet discovery mean we could find proof for the existence of extraterrestrials in our lifetime.

Superhuman
Spinal Implants: Helping the Paralyzed Walk Again
Spinal Implants: Helping the Paralyzed Walk Again
Watch Now
Superhuman
Spinal Implants: Helping the Paralyzed Walk Again
Walking after complete spinal cord injury used to be a far-fetched dream. But, with advances in spinal cord implants for paralysis, even paraplegics have been able to regain mobility and walk again.
Watch Now

Walking after complete spinal cord injury used to be a far-fetched dream. But, with advances in spinal cord implants for paralysis, even paraplegics have been able to regain mobility and walk again. Discover the inspiring stories of spinal cord research breakthroughs today and see the impact spinal implants have on individuals far and wide.

Dispatches
"Q" Probably Won't Make You Rich, but It's an Experiment Worth Watching
"Q" Probably Won't Make You Rich, but It's an Experiment Worth Watching
Dispatches
"Q" Probably Won't Make You Rich, but It's an Experiment Worth Watching
It's not the next Bitcoin (or a path to riches), but it's an intriguing idea.
By Brendan Markey-Towler

It's not the next Bitcoin (or a path to riches), but it's an intriguing idea.

Dispatches
What We Learned from a Decade of Commercial Space Travel
What We Learned from a Decade of Commercial Space Travel
Dispatches
What We Learned from a Decade of Commercial Space Travel
Businesses have gotten to space; now what?
By Joel Wooten

Businesses have gotten to space; now what?

Science
Bionic Prosthetic Grants Amputee Musician a Rocking Encore
Bionic Prosthetic Grants Amputee Musician a Rocking Encore
Science
Bionic Prosthetic Grants Amputee Musician a Rocking Encore
How might your life change if you lost an arm? After losing his right arm in an electrical accident, Jason wasn’t...
By Blake Snow

How might your life change if you lost an arm? After losing his right arm in an electrical accident, Jason wasn’t sure if he’d ever be able to drum again.

DIY
Treating Diabetes with a DIY Pancreas
Treating Diabetes with a DIY Pancreas
Watch Now
DIY
Treating Diabetes with a DIY Pancreas
A group of coders created an open source, DIY pancreas to help people with diabetes manage their condition.
Watch Now

Diabetes is a high maintenance and high stakes disease requiring constant monitoring and precise decision-making. What if we could outsource that workload to a machine? That’s what one couple decided to do. They made a homemade pancreas that eases the burden of diabetes care… and then released the design to the public for free.

Superhuman
Father Makes 3D Heart for Daughter
Father Makes 3D Heart for Daughter
Watch Now
Superhuman
Father Makes 3D Heart for Daughter
When a father’s daughter was diagnosed with a heart disease, he set out to design an innovative 3D model of a heart that doctors could explore in virtual reality to save her life and thousands more.
Watch Now

Any father would do whatever it takes to save their child’s life. So when Steve Levine found out that his daughter was diagnosed with a congenital heart disease, he started thinking of any way he could help. The problem was that his daughter was born with reversed left and right ventricles, the weaker of which would run the risk of giving out as she aged. She had a pacemaker installed at age two, and doctors gave her...

The New Space Race
Preparing the First Space Colonizers for Life Off of Planet Earth
Preparing the First Space Colonizers for Life Off of Planet Earth
The New Space Race
Preparing the First Space Colonizers for Life Off of Planet Earth
It’s only a matter of time until the average person can explore space. But, will the average person be ready?
By Mike Riggs

It’s only a matter of time until the average person can explore space. But, will the average person be ready?

This Computer Can Write 2,000 Snarky Articles Per Second
This Computer Can Write 2,000 Snarky Articles Per Second
This Computer Can Write 2,000 Snarky Articles Per Second
What does it mean for the future of journalism when a computer can turn mounds of data into a cohesive narrative?
By Mike Riggs

What does it mean for the future of journalism when a computer can turn mounds of data into a cohesive narrative?