Skip to main content
Move the World.
fusion powered spaceships

Lead Image © alonesdj / Adobe Stock

This article is an installment of The Future Explored, a weekly guide to world-changing technology. You can get stories like this one straight to your inbox every Thursday morning by subscribing here.

Saturn is nearly 1 billion miles away from Earth, and it currently takes NASA about 7 years to reach the Ringed Planet. However, with the right kind of propulsion system that commute could be cut to merely a couple of years.

Earlier this fall, an international team of scientists released a paper describing how a specific propulsion system — known as a direct fusion drive (DFD) — could drastically expedite travel between Saturn and Earth. Scientists currently have their eyes set on Titan, Saturn's moon, because it has surface liquids — which means it could potentially harbor life. Titan also has the potential to be a refueling station for future spacecraft to explore deep space.

A New Kind of Rocket

A DFD is a rocket-powered by low radioactivity nuclear fusion. This fusion would be the energy source for everything the craft needs — both in terms of propulsion and function (i.e., life support, communications, research). For example, "a fusion-equipped Pluto orbiter could beam down power to a lander on the dwarf planet's surface and also send high-definition video back to Earth," according to Space.com.

DFDs are still theoretical, but there's considerable work underway to make them a reality — this work is led by the Princeton Plasma Physics Laboratory, which is currently testing the second iteration of the fusion system.

Why This Matters

DFDs would have huge implications for space exploration, far beyond Saturn. Fusion-powered propulsion would make more frequent trips deeper into space a whole lot more affordable, both in terms of time and money.

For example, we could reach Pluto in five years instead of 10. Or, we could reach Mars in merely 3 months instead of the usual 7. When we're finally vacationing on the Red Planet, it could be a fusion-powered spacecraft that takes us there.

How It Works

The current DFD design is about the size of a minivan but can propel a whopping 11 tons. The interior houses hot plasma (made from the helium isotope, helium-3, and deuterium, a hydrogen isotope). The atoms of these isotopes fuse together, generating a ton of power. Like many other fusion reactors, the plasma in the engine is confined by very powerful magnets.

When we’re finally vacationing on the Red Planet, it could be a fusion-powered spacecraft that takes us there.

The plasma heats up a propellant, located outside the confined plasma regions. This propellant is then pushed out of a nozzle at the back of the rocket, creating a thrust that propels the rocket forward. This translates into 1 to 10 megawatts of power (one megawatt is equivalent to the horsepower in about five Ford F-150 trucks).

The DFD is being studied in two modes: one where it thrusts continuously and one where it only thrusts to get up to speed at the beginning. The first mode will mean faster flights since it will be speeding up the whole time, but the second mode may be more efficient. 

Popular Mechanics' Caroline Delbert describes the hybrid mode as a Toyota Prius. In Prius mode, the trip to Saturn will take an extra six months compared to flooring it the whole way.

Forever the Future?

Nuclear fusion is infamous for being difficult to make it feasible. The old joke is that fusion is the energy of the future...and always will be. Even though we have had fusion reactors for decades, we don't use them for electricity on Earth because they require more energy to run than they put out. But Stephanie Thomas, vice president of Princeton Satellite Systems, told Space.com last year that the DFD has a very real chance of being successful.

"DFD is different from other fusion-reactor concepts," she said, pointing to the engine's small size, clean operation, low radiation, and a unique plasma-heating method.

Just how soon could we see this success? According to Thomas, an actual fusion-propelled mission could come as early as 2028.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected]

Up Next

Astronomy
See the Most Realistic Simulation of Star Formation Yet
star formation
Astronomy
See the Most Realistic Simulation of Star Formation Yet
A new simulation of star formation is the most realistic ever created, giving scientists an unprecedented opportunity to study the birth of a star.

A new simulation of star formation is the most realistic ever created, giving scientists an unprecedented opportunity to study the birth of a star.

Astronomy
Solar Probe Snaps Surprising Photo of the Surface of Venus
surface of venus
Astronomy
Solar Probe Snaps Surprising Photo of the Surface of Venus
The Parker Solar Probe has taken an image of the surface of Venus that may change what we thought we knew about the planet — or possibly the probe itself.

The Parker Solar Probe has taken an image of the surface of Venus that may change what we thought we knew about the planet — or possibly the probe itself.

AI
Just How Are Deepfakes Made, Anyway?
what is a deepfake
AI
Just How Are Deepfakes Made, Anyway?
Capable of creating incredibly realistic false data — most infamously of famous people — deepfakes are a powerful tool.

Capable of creating incredibly realistic false data — most infamously of famous people — deepfakes are a powerful tool.

Drones
Underwater Drone Finds Wreckage of the “Unsinkable” USS Nevada
USS Nevada
Drones
Underwater Drone Finds Wreckage of the “Unsinkable” USS Nevada
More than 70 years after the U.S. military deliberately sank the “unsinkable” USS Nevada, researchers have located its final resting spot.

More than 70 years after the U.S. military deliberately sank the “unsinkable” USS Nevada, researchers have located its final resting spot.

Seachange
The Fight to End Illegal Logging
illegal logging
Seachange
The Fight to End Illegal Logging
Citizen scientists are collecting tree samples to build a genetic database that will help identify the origins of stolen lumber and stop illegal logging.

Citizen scientists are collecting tree samples to build a genetic database that will help identify the origins of stolen lumber and stop illegal logging.

Dispatches
Brains Store Memories in a Temporary "Cache" (and We Can Read It)
What Part of the Brain Stores Memory?
Dispatches
Brains Store Memories in a Temporary "Cache" (and We Can Read It)
Like the day’s newspaper, the brain has a temporary way to keep track of events.
By Kelsey Tyssowski

Like the day’s newspaper, the brain has a temporary way to keep track of events.

Medicine
Could Growing Vaccines in Plants Save Lives?
Could Growing Vaccines in Plants Save Lives?
Watch Now
Medicine
Could Growing Vaccines in Plants Save Lives?
Vaccines for influenza, polio, smallpox, even Ebola have all be grown … in plants.
Watch Now

This flu season has been nasty in large part because the vaccine didn’t work as well as past versions. So scientists like Professor George Lomonossoff of the John Innes Centre are on the hunt for new ways to make better vaccines and think they might have found one -- by growing them in plants.