Skip to main content
Move the World.
Living Drugs May Be the Key to Beating Genetic Disease
Credit: CDC/ Sarah Bailey Cutchin

A pill containing millions of bacteria ready to colonize your gut might be a nightmare to many. But it may become an effective new tool for fighting disease.

In many inherited genetic diseases a mutated gene means that an individual cannot make a vital substance necessary for their body to grow, develop or function. Sometimes this can be fixed with a synthetic substitute — a pill — that they can take daily to replace what their body should have made naturally. People with a rare genetic disease called phenylketonuria (PKU), lack an enzyme that is essential for breaking down protein. Without it, toxic chemicals build up in the blood and can cause permanent brain damage.

Fortunately, the fix is easy. Physicians treat the disease by putting their patients on a super low-protein diet for the rest of their life. Indeed, because the fix was so simple PKU was the first disorder for which newborn babies were routinely screened, beginning in 1961, by analyzing a drop of blood collected from a prick on the baby’s heel.

But imagine how challenging it can be to measure everything you eat during your entire life. To cure PKU researchers are currently exploring new treatment strategies. One involves using gene-editing tools to correct genetic mutations. However, the current technology is still risky; there is a chance of disrupting other genes and causing collateral damage to patients.

What if one could replace the broken gene without affecting the patient’s genome? That’s exactly what researchers at the Cambridge, Massachusetts-based biotech company Synlogic have done. They decided that rather than meddling directly with the human genome, they would introduce the therapeutic genes directly into the naturally occurring bacteria that reside in the human gut. These genetically modified bacteria would then produce the enzymes that PKU patients lacked and break down the proteins into non-toxic products.

I am a postdoctoral researcher at UCSD who studies the community of microbes that live within our bodies, and how they impact our health. Now we are starting to understand the role they play maintaining us healthy. The next step is figuring out how we can alter them to improve our health. And Synlogic’s study is bringing that dream a step closer.

Engineering bacteria living in our gut

You may be surprised to learn that our intestines are inhabited by trillions of bacteria that help us digest food, produce vitamins for us and educate our immune system. This community of microbes is our microbiome. Together they harbor millions of different genes in their genomes, outnumbering our human genes 150 to 1, and we can use them to our own benefit.

Escherichia coli Nissle 1917 is one of those microbes living inside most of us and has been widely used as a probiotic for over a century, proving its safety.

This is the bacterium that Synlogic chose to engineer to create a new therapeutic “super bacteria” called SYNB1618 for PKU patients.

The researchers introduced three genes that enable SYNB1618 to transform one of the building blocks of protein, an amino acid called phenylalanine, into the safe compound, phenylpyruvate. As long as the levels of phenylalanine are kept low, PKU patients don’t show any symptoms and live normal lives.

Are GM bacteria safe?

Opponents of genetically modified organisms might object to adding designer microbes into our guts. But just as they do with genetically modified foods, there are strict FDA regulations that ensure that these microbes are safe.

In the case of SYNB1618 the researchers deleted a gene responsible for producing an essential ingredient for building the bacteria. If the researchers don’t provide the missing ingredient for the engineered bacteria, they can’t replicate and will die. It’s a way for researchers to control the SYNB1618 in a patient’s body.

When they tested the microbes in mice they discovered that after 48 hours without the crucial ingredient, the SYNB1618 had vanished from their guts.

The researchers at Synlogic also took other precautions when engineering SYNB1618 and choosing which microbes to use for therapy. Other than the genes added to process phenylalanine, the engineered bacteria contains exactly the same genes as the original E. coli Nissle 1917 that is native to the gut, ensuring its safety.

Does it really work?

Once the researchers proved that the bacteria could convert the phenylalanine in the lab, they decided to administer the bacteria to mice with PKU. The results showed that SYNB1618 degraded phenylalanine circulating in the animals’ intestine, which lowered the levels in the blood of the treated mice.

Then, preparing for tests in humans, researchers tested the SYNB1618 on monkeys, to ensure safety and efficacy in humans. Healthy monkeys without PKU were fed phenylalanine and given a dose of the microbes afterwards. The SYNB1618 bacteria successfully reduced the phenylalanine blood levels - just as they did in the mouse.

Synlogic is currently testing SYNB1618 in humans in a phase 1 clinical trial.

This is a step toward a new therapeutic approach that offers great potential to treat human diseases like diabetes and cancer and to monitor inflammation levels in inflammatory bowel diseases.

As we discover and understand the role of all the microbes that inhabit our bodies I expect that we will identify microbes that may be the perfect vehicles for carrying various gene therapies that treat even more diseases, including those involving metabolism and the central nervous system.

Pedro Belda Ferre is a Postdoctoral Scholar in Pediatrics at UC-San Diego. This article is republished from The Conversation.

The Conversation

More About

Future of Food
Inside the World of Gourmet Lab Meat
Inside the World of Gourmet Lab Meat
Watch Now
Future of Food
Inside the World of Gourmet Lab Meat
A future of eating meat without ethical or environmental implications is more real than ever before. But will people eat it food grown in a lab?
Watch Now

A future of eating meat without ethical or environmental implications is more real than ever before. While plant-based alternatives are growing in popularity, the real black horse with game-changing potential seems to be actual meat… grown in science labs. The question at this point is not whether this approach is viable or scalable, but simply: will people want to eat it?

Future of Food
It’s Time to Embrace the Frankenfish
It’s Time to Embrace the Frankenfish
Watch Now
Future of Food
It’s Time to Embrace the Frankenfish
Would you eat fish that was genetically designed in a lab? What if it was your only option? Like it or not, GMO salmon and other futuristic foods are revolutionizing the global food system right in front of our eyes.
Watch Now

Bioengineered fish have been known to cause mixed feelings. Unnatural, right? Well, after 30 years of debate on whether we should be eating “Frankenfish,” this funky food source is finally coming to a store near you. Like it or not, GMO salmon and possibly other genetically engineered animal meats will soon be on the shelves of your local supermarket. And, these new futuristic foods may be revolutionizing the global food…

What Is Cystic Fibrosis—And What Is It Like?
What Is Cystic Fibrosis—And What Is It Like?
What Is Cystic Fibrosis—And What Is It Like?
What you need to know about this genetic disease, explained by someone who knows it inside and out.
By Ella Balasa

What you need to know about this genetic disease, explained by someone who knows it inside and out.

Dispatches
Paige and the Virus Hunter
Paige and the Virus Hunter
Dispatches
Paige and the Virus Hunter
Drugs couldn’t stop her infection — so she asked Ben Chan to get her a virus, instead.
By Kaitlin Ugolik

Drugs couldn’t stop her infection — so she asked Ben Chan to get her a virus, instead.

Dispatches
Meet the 380 Trillion Viruses inside Your Body
Meet the 380 Trillion Viruses inside Your Body
Dispatches
Meet the 380 Trillion Viruses inside Your Body
Scientists aren't exactly sure yet what the "virome" is up to, but it's probably important.
By David Pride and Chandrabali Ghose

Scientists aren't exactly sure yet what the "virome" is up to, but it's probably important.

Dispatches
A New Kind of Headset “Hears” Words You Don’t Say
A New Kind of Headset “Hears” Words You Don’t Say
Dispatches
A New Kind of Headset “Hears” Words You Don’t Say
The project, named AlterEgo, intentionally crosses the line between what's "out there" and what's in your head.
By Dan Bier

The project, named AlterEgo, intentionally crosses the line between what's "out there" and what's in your head.

Dispatches
GMO Mosquitoes Could Be Our Best New Weapon against Disease
GMO Mosquitoes Could Be Our Best New Weapon against Disease
Dispatches
GMO Mosquitoes Could Be Our Best New Weapon against Disease
It sounds like science fiction, but it could save millions of lives.
By Jason Rasgon

It sounds like science fiction, but it could save millions of lives.

Coded
Meet the Artist and Activist Who Wants You to Erase Your DNA
Meet the Artist and Activist Who Wants You to Erase Your DNA
Coded
Meet the Artist and Activist Who Wants You to Erase Your DNA
Heather Dewey-Hagborg wants to make sure people understand the hidden secrets in the DNA they leave behind everywhere they go.
By Michael O'Shea

Heather Dewey-Hagborg wants to make sure people understand the hidden secrets in the DNA they leave behind everywhere they go.

Assistive Tech Doesn't Have to be High Tech
Assistive Tech Doesn't Have to be High Tech
Assistive Tech Doesn't Have to be High Tech
The story of how 3D printing gave Ryan Hines a chance to regain his independence for $150. And how he's…
By Mike Riggs

The story of how 3D printing gave Ryan Hines a chance to regain his independence for $150. And how he's now offering the same chance to others.