Skip to main content
Move the World.
living robots

Lead image © virtua73 / Adobe Stock

This article is an installment of The Future Explored, a weekly guide to world-changing technology. You can get stories like this one straight to your inbox every Thursday morning by subscribing here.

Teeny-tiny living robots made their world debut earlier this year. These microscopic organisms are composed entirely of frog stem cells, and, thanks to a special computer algorithm, they can take on different shapes and perform simple functions: crawling, traveling in circles, moving small objects — or even joining with other organic bots to collectively perform tasks.

Why this matters

This is the first "living, programmable organism," and it is somewhere between what we consider a traditional robot and an animal. Since they're made of living tissue, these bots can self-repair if ruptured — so, scientists hope this breakthrough will help us further develop self-repairing soft robots. Ultimately, however, the goal for these little creatures is that they will be able to do really useful things like clean up microplastics, digest toxic materials, and even deliver drugs inside our bodies.

Building xenobots

These machines are referred to as xenobots, because they're composed of the stem cells of the African clawed frog (Xenopus laevis). Researchers combined embryonic stem cells from the heart — which give the bot movement since these cells naturally expand and contract — and the skin, which provides a rigid, protective structure. Each xenobot has about 500 to 1,000 living cells and is less than 1mm long.

The researchers conjured up random configurations of the two types of cells. Some were shaped like wedges, others like arches. Each xenobot's unique structure determined how it would behave — would it shuffle along the bottom of the petri dish, swim, or link up and do donuts around the others? (The New York Times has some amazing videos of this you should check out).

Now here comes the computer wizardry

Computer scientists built a virtual world for digital copies of the xenbots to play in. A fancy algorithm was designed to help identify the most promising structures. (The algorithm basically mimics natural selection by looking at how possible tweaks to the structures may affect the bot's ability to complete various tasks).

"It turns out that it is very difficult to design an organism from scratch. So we tell the computer what we want the organism to do, and the computer performs a trial and error process, creating and simulating millions of virtual creatures," says Sam Kriegman, a University of Vermont PhD student and co-author of the study.

"We tell the computer what we want the organism to do, and the computer performs a trial and error process, creating and simulating millions of virtual creatures."

Sam Kriegman

Many xenobots ended up being unuseful blobs and "natural selection" did its thing and weeded them out. Others, however, showed potential. Their structures kept getting "inherited" and "mutated" in the algorithm until researchers were able to perfect their designs in the petri dish.

A natural advantage

Since they're made of cells, these machines have a real biological clock. They only have enough cellular power to last about a week — after that, they naturally decompose.

"These xenobots are fully biodegradable," says Joshua Bongard, co-author of the study. "When they're done with their job after seven days, they're just dead skin cells." This gives xenbots an advantage over other human-made machines composed of things like concrete, plastic, steel, and chemicals, which can be harmful to the environment and our health when they degrade.

Still so simple

Right now, these xenobots can complete fairly simple tasks in their petri dishes. But researchers believe this could be a stepping stone to programming more complex tasks, which would help advance fields like precision medicine and regenerative medicine. The bots also have the potential to help with environmental cleanup tasks, too.

"We can already see the rudiments of useful work: swarms of xenobots tend to work together to push pellets in their dish into neat piles," Kriegman told the Harvard Crimson. "We can imagine future xenobots doing the same thing with microplastics in the ocean: aggregating tiny bits of plastic into a large ball of plastic that a traditional drone can gather and bring to a recycling center."

At the moment, scientists are focused on learning how cells communicate with each other and with the algorithm.

"There's all of this innate creativity in life," Bongard told the University of Vermont. "We want to understand that more deeply — and how we can direct and push it toward new forms."

Up Next

Dinosaurs
Gators and Guineafowl May Help Us Understand How Dinosaurs Moved
how dinosaurs moved
Dinosaurs
Gators and Guineafowl May Help Us Understand How Dinosaurs Moved
Using x-ray 3D-imaging techniques, researchers are turning to gators and guineafowl to better understand how dinosaurs moved.

Using x-ray 3D-imaging techniques, researchers are turning to gators and guineafowl to better understand how dinosaurs moved.

Food
Robot Cook Could Help Restaurants Recover from COVID-19
Robot Cook
Food
Robot Cook Could Help Restaurants Recover from COVID-19
Miso Robotics is making Flippy ROAR available for $30,000 in the hopes the robot cook will help the restaurant industry recover from the pandemic.

Miso Robotics is making Flippy ROAR available for $30,000 in the hopes the robot cook will help the restaurant industry recover from the pandemic.

Medical Innovation
Can Green Light Therapy Cure Chronic Pain?
green light therapy
Medical Innovation
Can Green Light Therapy Cure Chronic Pain?
Scientists are finding that exposure to the color green, also known as green light therapy, could provide natural chronic pain relief.

Scientists are finding that exposure to the color green, also known as green light therapy, could provide natural chronic pain relief.

Dope Science
New Promise for Psychedelics and Depression
studying psychedelics and depression
Dope Science
New Promise for Psychedelics and Depression
New findings on psychedelics and depression show the benefits of microdosing, and could present more effective treatment options.
By Kurt Hackbarth

New findings on psychedelics and depression show the benefits of microdosing, and could present more effective treatment options.

Future of Health
Is the Future of Therapy… Virtual? A Look Into Virtual Reality Therapy
Is the Future of Therapy… Virtual? A Look Into Virtual Reality Therapy
Future of Health
Is the Future of Therapy… Virtual? A Look Into Virtual Reality Therapy
The immersive world of VR may have therapeutic benefits for people combating phobias, anxiety, and PTSD.
By Kaitlin Ugolik

The immersive world of VR may have therapeutic benefits for people combating phobias, anxiety, and PTSD.

Dispatches
Robots Are Mass Producing Mini-Organs
Robots Are Mass Producing Mini-Organs
Dispatches
Robots Are Mass Producing Mini-Organs
Robots can make hundreds of tiny copies of your organs, allowing doctors to test many different treatments at the...

Robots can make hundreds of tiny copies of your organs, allowing doctors to test many different treatments at the same time.

Science
What to Expect In a Post-Meat Future
What to Expect In a Post-Meat Future
Science
What to Expect In a Post-Meat Future
From advanced plant-based meat alternatives to real meat grown in a lab, the days of eating meat from once-living...
By Mike Riggs

From advanced plant-based meat alternatives to real meat grown in a lab, the days of eating meat from once-living animals could be numbered.

Conor Russomanno on Exploring Our Limits
Conor Russomanno on Exploring Our Limits
Watch Now
Conor Russomanno on Exploring Our Limits
Could linking our brains to computers allow the mind to control the world outside of our bodies?
Watch Now

Conor Russomanno’s interest in his own brain started with a bump on his head. A concussion he sustained during a game of rugby altered his perception of the world for months afterward. And that change got him thinking about the relationship between his physical brain and the way he thinks. To help him better understand himself--and to help other people understand themselves--he partnered with Joel Murphy to start...