Skip to main content
Move the World.
organ chips

Lead image courtesy of Wyss Institute at Harvard University

Researchers have built a proxy for the human body by linking together "organ chips," a technique that could speed up research on diseases and new treatments. The organ chips — tissue cells from a specific organ, linked together like systems in the body — will allow researchers to study the human response to various drugs and chemicals in the lab, without needing human or animal test subjects. 

"It's a little bit like human experimentation in vitro," says biologist Donald Ingber.

If this conjures thoughts of Frankenstein, rest assured, the body-on-chips system is hardly human. It looks more like a tesselation of polymer tiles, each about the size of a domino. Two fluid channels are lined with human tissue cells from blood vessels and various body parts.

"It's a step in between animals and humans, and animal studies have their own problems. They're not human, (so) they don't have all the human response," says Ingber.

organ chips

Researchers developed "The Interrogator" to automatically link organ chips. Credit: Wyss Institute at Harvard University

94% of drugs that pass animal studies will fail during human trials, so scientists also test drugs on human cells in a petri dish. But cells-in-a-dish are no more representative of an entire human body than an animal is. Lately, researchers have turned to growing mini-organs (also called organoids) to model diseases and test new drugs. But isolated cells and even mini-organs lack the complexity of an entire organ-filled human body.

So Ingber suggested linking many organ chips together: a lung, liver, intestines, kidneys, skin, bone marrow, and the blood-brain barrier.

Ingber's team at Harvard's Wyss Institute built an instrument, called the Interrogator, which automatically links the organ chips to create a functional "human body-on-chips." With this platform, they can predict how the human body will metabolize drugs. They are now focusing on treatments for COVID-19.

"There is no bigger crisis than COVID-19 in the entire world right now," Ingber says. He says that the fastest way to find a treatment for COVID-19 will be by finding a drug that is already FDA-approved and can be repurposed to treat COVID-19.

"The problem is COVID-19 and the need to come up with some kind of solution quickly. The fastest way you can get drugs out there that might prevent spread, and thus allow us to go back to work, would be finding some existing drug that you can reuse that's already approved and safe," Ingber says. "We're developing a systematic way to move some of these drugs up the priority list to be tested in patients."

Even FDA approved drugs that pass Ingubur's organ-chip studies will need to be tested in COVID-19 patients to be approved as a coronavirus treatment.

I hadn't heard of organ chips until recently. But the origins of the industry are about three decades old. It began in 1989 when biomedical engineer Michael Shuler helped a student make a model of the fluids in the human body to study the effects of drugs. Their model mimicked how tissues hooked together. This began the evolution of organs-on-chips. Since then, Shuler and about 100 companies have commercialized organ chips.

"About 10% of the drugs that go into clinical trials come out as approved, useful drugs. If we just changed that from 10% to 20...society gets twice as many useful drugs for basically the same investment."

Michael Shuler

"About ten percent of the drugs that go into clinical trials come out as approved, useful drugs. If we just changed that from ten percent to twenty — we think we can do better than that even — that means society gets twice as many useful drugs for basically the same investment," Shuler says.

The organ chips really do help predict how the human body metabolizes the drugs. In one study, Ingber found that linked liver, kidney, and bone marrow organ chips metabolized cisplatin, a chemotherapy drug, at a similar rate as humans metabolize it. The organ chips even experienced the same injury to the kidney cells that chemotherapy patients commonly show.

organ chips

Lung-on-a-chip connected to other organ chips, under a microscope. Credit: Wyss Institute at Harvard University

"I'm anxious to see FDA finally embrace this technology fully," says Shuler. Although the FDA has shown support, the technique isn't yet FDA approved for pre-clinical studies, which often require animal studies.

Both Shuler and Ingber think that organ chips have a vast potential to speed up drug development and even outdo animal studies, to the point where animal studies become obsolete.

In addition to new drug studies, by creating specific organ chips for individual patients, researchers could test drug combinations for personalized care before administering them to the patient. And the organ-chip platform could close the diversity gap in research, which is important because some groups suffer from certain diseases more than others, but aren't well represented in research studies.

If all goes according to Ingber and Shuler's plan, it won't be long before organ-chip studies become a standard part of the process for new drugs.

Up Next

Science
Scientists Grew a Mini Brain in a Lab. It Has Human-Like Brain Waves.
Scientists Grew a Mini Brain in a Lab. It Has Human-Like Brain Waves.
Science
Scientists Grew a Mini Brain in a Lab. It Has Human-Like Brain Waves.
For the first time, a lab-grown mini brain has brain waves. Researchers can now launch new ways to study brain disorders. But the question of consciousness in the brain-like organoid could raise concern.

For the first time, a lab-grown mini brain has brain waves. Researchers can now launch new ways to study brain disorders. But the question of consciousness in the brain-like organoid could raise concern.

Dispatches
Robots Are Mass Producing Mini-Organs
Robots Are Mass Producing Mini-Organs
Dispatches
Robots Are Mass Producing Mini-Organs
Robots can make hundreds of tiny copies of your organs, allowing doctors to test many different treatments at the...

Robots can make hundreds of tiny copies of your organs, allowing doctors to test many different treatments at the same time.

Future of Medicine
Stem Cell Research Breakthrough Opens Path to Growing Human Organs in Animals
Stem Cell Research
Future of Medicine
Stem Cell Research Breakthrough Opens Path to Growing Human Organs in Animals
New stem cell research has revealed a way to coax human cells to grow to maturity in mouse models, a major advance in the field.

New stem cell research has revealed a way to coax human cells to grow to maturity in mouse models, a major advance in the field.

Medical Breakthroughs
Building a Factory for Human Organs
manufacturing Human Organs
Medical Breakthroughs
Building a Factory for Human Organs
Tissue engineering and regenerative medicine experts are working to mass-produce human organs through the ARMI consortium.

Tissue engineering and regenerative medicine experts are working to mass-produce human organs through the ARMI consortium.

On The Fringe
Growing Human Organs in Pigs
Growing Human Organs in Pigs
Watch Now
On The Fringe
Growing Human Organs in Pigs
Twenty people die every day in the U.S. waiting for an organ transplant. There aren’t enough organs for the 100,000...
Watch Now

Twenty people die every day in the U.S. waiting for an organ transplant. There aren’t enough organs for the 100,000 people waiting for one. And there likely never will be… unless we can find a better way to source them. Enter: the pigs. A team of scientists has figured out how to grow human organs in pigs. It might make you feel weird. But it also might save countless lives.

Medical Innovation
Experts Are 3D Printing Coronavirus Supplies for Hospitals
coronavirus supplies
Medical Innovation
Experts Are 3D Printing Coronavirus Supplies for Hospitals
After an Italian firm 3D printed in-demand coronavirus supplies for a hospital, others in the community were inspired to offer their own help.

After an Italian firm 3D printed in-demand coronavirus supplies for a hospital, others in the community were inspired to offer their own help.

Dispatches
Paralyzed Mice Walk Again After Breakthrough Treatment
Paralyzed Mice Walk Again After Breakthrough Treatment
Dispatches
Paralyzed Mice Walk Again After Breakthrough Treatment
One small step for a mouse, perhaps one giant leap for treating spinal injuries.

One small step for a mouse, perhaps one giant leap for treating spinal injuries.

Dispatches
Neuroscientists Want to Beam Experiences Directly into Your Brain
Neuroscientists Want to Beam Experiences Directly into Your Brain
Dispatches
Neuroscientists Want to Beam Experiences Directly into Your Brain
It's a breakthrough for the blind and paralyzed, not the first step toward the Matrix. (Promise.)

It's a breakthrough for the blind and paralyzed, not the first step toward the Matrix. (Promise.)

The New Space Race
Can We Make It In Space?
Can We Make It In Space?
Watch Now
The New Space Race
Can We Make It In Space?
What if one day, everything in space was made in space? 3D printing may hold the answer.
Watch Now

NASA intern turned Silicon Valley entrepreneur, Jason Dunn, saw what was holding humans back from colonizing outer space...and decided to do something about it. With his company Made in Space’s cutting-edge 3D printer, astronauts can break their reliance on costly resupply missions from Earth and—for the first time ever—build new supplies for themselves in space. Dunn and his team believe their invention will usher in a new...