Skip to main content
Move the World.
genetically modified poplar trees

Lead Image © Valeriagilardi / Adobe Stock

Over the past 15 years, the number of poplar trees around the world has doubled, covering nearly 9.4 million hectares of land. While these huge poplar plantations are used to create biofuels, paper, and timber, a chemical compound lurking within their leaves — isoprene — means that these trees might be doing more harm than good to the environment. In addition to isoprene alone having emissions levels similar to that of methane, studies have shown that increased isoprene emissions caused by escalated poplar tree cultivation could increase premature human deaths 6% by this year. Isoprene is often considered a necessary evil because it allows the poplar trees to endure environmental stress. However, a new study has found that it may be possible to suppress the creation of isoprene without harming the growth of the trees.

Just Because It's "Natural" Doesn't Mean It's Good

When we think of air pollution, we typically think of CO2-belching automobiles or planes, but sometimes (as is the case with poplars) ugly things come in beautiful packages. Besides helping the trees deal with environmental stressors, such as warmer temperatures, isoprene in the air also reacts to form harmful air pollutants, like ozone and aerosols, and promotes longer lifespans for methane, a powerful greenhouse gas. 

Together, these increased pollutants negatively affect air quality and human health, as well as eat away at the world's global energy budget. 

It's Time to Go Gene Shopping

To see what they could do about this Jekyll and Hyde compound, the team behind the new study looked at two experimental poplar plantations — one in Arizona and one in Oregon — to see whether manipulating the trees' genes to suppress isoprene would negatively impact the trees' overall fitness. 

At the Oregon field site, the team studied 19 different genetic poplar lines (15 of which were designed to suppress isoprene emission) over three years; in Arizona, four poplar varieties, two without isoprene, were studied for four years. 

Isoprene - a chemical compound found in poplar leaves - has emissions levels similar to that of methane.

Throughout these experiments, the team tested the trees' reaction to environmental stressors (such as heat or restricted water), measured their rate of photosynthesis, and evaluated their root biomass. They found very little difference in overall fitness between the poplar trees with isoprene suppression and those without it.

Two Working Theories

While the results show promise for reducing isoprene emissions from poplar trees, the team still isn't quite sure what's going on behind the scenes to create this positive result. But they have a few ideas. 

The first theory is that the trees might simply be compensating for the lack of isoprene by using different chemical pathways to achieve the same level of stress-protection. The second is that most of the poplars' growth takes place during low-stress times (e.g. cooler weather) and that isoprene is naturally less important during these growth periods anyway. 

Did Someone Say CRISPR? 

For this study, the team relied on genetic manipulation of RNA, but they write that future research could benefit from using a DNA manipulation tool, like CRISPR. The authors write that CRISPR would not only be easier to use but would also avoid some of the regulatory hurdles placed on their RNA method, meaning that this approach could be brought to the wider agriculture community much sooner.

Up Next

Environment
The Robot Racing to Study Antarctica’s Massive Ice Melt
The Robot Racing to Study Antarctica’s Massive Ice Melt
Environment
The Robot Racing to Study Antarctica’s Massive Ice Melt
Icefin, a semi-autonomous research vessel, is on a mission to search for clues about one of the continent’s fastest melting glaciers, the Thwaites Glacier.
By Sarah Wells

Icefin, a semi-autonomous research vessel, is on a mission to search for clues about one of the continent’s fastest melting glaciers, the Thwaites Glacier.

Uprising
Tree-Planting Drones Restore Charred Forests
tree-planting drones
Uprising
Tree-Planting Drones Restore Charred Forests
This Seattle startup is bringing new life to charred forests by releasing swarms of smart, tree-planting drones equipped with seeds, mini seedbeds, and cameras.

This Seattle startup is bringing new life to charred forests by releasing swarms of smart, tree-planting drones equipped with seeds, mini seedbeds, and cameras.

Medical Innovation
This Adjustable Heart Valve Would Grow as a Child Ages
heart valve
Medical Innovation
This Adjustable Heart Valve Would Grow as a Child Ages
A new, prototype artificial heart valve can adjust to a child’s growing body, potentially sparing them from multiple open-heart surgeries before adulthood.

A new, prototype artificial heart valve can adjust to a child’s growing body, potentially sparing them from multiple open-heart surgeries before adulthood.

Archeology
The Tech That’s Revolutionizing Archeology with Josh Gates
The Tech That’s Revolutionizing Archeology with Josh Gates
Archeology
The Tech That’s Revolutionizing Archeology with Josh Gates
In our interview with renowned adventurer Josh Gates, the host of Expedition Unknown discusses the beautiful connection between tech and archaeologists.

In our interview with renowned adventurer Josh Gates, the host of Expedition Unknown discusses the beautiful connection between tech and archaeologists.

Seachange
Ship’s Logbooks Are the First Records of Climate Change Data
Ship’s Logbooks Are the First Records of Climate Change Data
Seachange
Ship’s Logbooks Are the First Records of Climate Change Data
With the weather and ice data from old ship’s logs, Dr. Kevin Wood realized it was possible to reconstruct the history of sea ice in the Arctic to better understand climate change.

With the weather and ice data from old ship’s logs, Dr. Kevin Wood realized it was possible to reconstruct the history of sea ice in the Arctic to better understand climate change.

Dispatches
Genetic Tests Miss “Invisible” Mutations That Cause Disease and Neurological...
Genetic Tests Miss “Invisible” Mutations That Cause Disease and Neurological Disorders
Dispatches
Genetic Tests Miss “Invisible” Mutations That Cause Disease and Neurological...
There's more to your DNA than just letters, and mutations can lurk in that genetic "dark matter."

There's more to your DNA than just letters, and mutations can lurk in that genetic "dark matter."

Superhuman
Meet the One-Armed Drummer With a Cybernetic Arm
The World’s First Bionic Drummer
Watch Now
Superhuman
Meet the One-Armed Drummer With a Cybernetic Arm
Jason Barnes lost his arm in a horrible accident. Then he became the fastest drummer in the world...
Watch Now

Jason Barnes lost his arm in a horrible accident... and then he became the fastest drummer in the world. Now he’s working with doctors and engineers who are designing ultrasound sensors that could give him back fine motor control. Join us as he sits down to play piano for the first time since his accident. Today, the one-armed drummer has his sights set on conquering his next musical instrument: the piano. But his...

The New Space Race
Can We Make It In Space?
Can We Make It In Space?
Watch Now
The New Space Race
Can We Make It In Space?
What if one day, everything in space was made in space? 3D printing may hold the answer.
Watch Now

NASA intern turned Silicon Valley entrepreneur, Jason Dunn, saw what was holding humans back from colonizing outer space...and decided to do something about it. With his company Made in Space’s cutting-edge 3D printer, astronauts can break their reliance on costly resupply missions from Earth and—for the first time ever—build new supplies for themselves in space. Dunn and his team believe their invention will usher in a new...

Superhuman
Reversing Blindness
Reversing Blindness
Watch Now
Superhuman
Reversing Blindness
Vanna was legally blind. Now she can see. Hear her inspiring story and meet the amazing doctors who gave her back her sight.
Watch Now

Vanna started to notice a change in her vision. Six months later, she was legally blind. But Vanna never lost hope, and enrolled in an experimental clinical trial. Her doctors injected stem cells from her hip into her optic nerve. Afterwards, she started to regain her vision. Amazingly, Vanna can now see. This is the story of reversing blindness.