Skip to main content
Move the World.

For centuries, the best thing a doctor could do for someone who’d lost a limb was keep them from bleeding to death. This was done by applying a hot iron or boiling tar to the wound (without anaesthesia), up until 1718, when J. L. Petit invented the screw tourniquet (still no anaesthesia). But as medical knowledge grew, so too did our ability to treat amputations. We learned how to stop the bleeding without burning, how to disinfect the site of amputation, and how to anaesthetize patients.

But long after we’d discovered all those things, patients had very few options when it came to choosing substitutes for their original limbs. The prosthetic arm with a hook on the end, common still today, dates back to the 11th century. Prosthetic legs, meanwhile, didn’t change all that much from the renaissance until the early 20th century, when the aviator Marcel Desoutter lost his own leg and had the idea to craft a replacement using lightweight aluminum, rather than steel or wood.

Considering the slow evolution of prosthetics in the first two millennia of the common era, what we’ve seen in just the last 10 years--from both a functionality standpoint and an aesthetic one--is kind of mind-boggling. There’s Johnny’s arm, of course:

But there’s also Hugh Herr’s legs. Herr is the co-director of the Center for Extreme Bionics at MIT. When he was a teenager, he had both of his legs amputated below the knee after being stranded on a mountain and experiencing severe frostbite. The legs he wears now are arguably better than the ones he was born with. Here he is wearing them during a TED talk:

Hughgif1

And here’s a closer look:

Hughgif2

Herr’s legs enable to him to live just as fully as he did when he was biologically intact. Herr hasn’t just restored himself, however. His team also designed a prosthetic leg for Adrianne Haslet-Davis, who lost her left leg in the Boston Marathon Bombing. Here she is dancing publicly for the first time on her new leg:

Hughgif3

Herr’s vision for the future of bionics is technology so advanced that it doesn’t just repair broken bodies--it makes them better than they were before their injuries. “I believe the next step in bionics is to increase the mergence of the built design world with biological tissues, electrically, mechanically, and chemically,” Herr said in a recent Reddit AMA. “The fundamental science and technology that will enable this mergence will not only end many disabilities, but will also serve as the same foundation to enable human augmentation, extending capability beyond innate physiological levels.”

"The fundamental science and technology...will also serve as the same foundation to enable human augmentation, extending capability beyond innate physiological levels.”

The idea that prosthetics can make us better than normal is shared by most cutting edge bionics researchers. In an interview with Freethink, Michael P. McLoughlin of the Applied Physics Laboratory at Johns Hopkins, said that he wants to develop upper limb prostheses so advanced that we’re forced to consider whether these technologies provide an unfair advantage to the people who use them.

If you want to see more of Herr’s projects, you can check them out at BIONX, as well as at MIT’s Biomechatronics Group. And you should definitely watch Herr’s TED Talk, where you can see Haslet-Davis finish that dance:

https://youtu.be/CDsNZJTWw0w

The transformation in the bionics field isn’t just functional. We’re also seeing incredible shifts on the aesthetic front. And no one has broken more ground than industrial designer Scott Summit, whose work unites both form and function in a way that “invites engagement and connects the amputee with the world around.”

“If something feels medical, then we can only think of it as a medical adjunct,” Summit writes at his site. “If it instead complements the human form, taste and style, then it evolves from medical stopgap into something more human. It generates excitement, not pity.”

Summit accomplishes that paradigm shift with designs like these:

Credit: Scott Summit/summitID

“The goal,” Summit writes, “was to rethink the nature of a prosthetic leg, imbuing it with all the personalization of a bespoke fashion product, while recreating body symmetry on the wearer. A 3D scan of the contralateral leg creates symmetric reference geometry, and the wearer is queried for design and material input.”

The results were equally powerful: “Athletes played sports again, since the fairing offered utility in soccer and other sports. Amputees wore shorts or skirts again, since the leg was intended to be seen, not hidden. Amputees interacted more with the people around them, since the leg suddenly invited questions and comments, instead of awkward avoidance.”

Check out Summit’s TED Talk for his full take on making prosthetics equally appealing and functional:

https://youtu.be/fir5HI0Gwrc

And make sure to watch (and share!) our episode about the Applied Physics Lab at Johns Hopkins, and the arm they designed for Johnny Matheny.

Up Next

Transportation
Smartphone App Gives Independent Travel to the Disabled
travel for the disabled
Transportation
Smartphone App Gives Independent Travel to the Disabled
A new smartphone app unlocks independent travel for people with intellectual disabilities.

A new smartphone app unlocks independent travel for people with intellectual disabilities.

Insects
The "Iron Man" of Beetles Could Inspire Super-Durable Cars and Planes
Diabolical Ironclad Beetle
Insects
The "Iron Man" of Beetles Could Inspire Super-Durable Cars and Planes
The diabolical ironclad beetle could be the next big thing in biomimicry, inspiring the design of extra-durable planes, cars, and more.

The diabolical ironclad beetle could be the next big thing in biomimicry, inspiring the design of extra-durable planes, cars, and more.

Biology
It's Now Easier To See Individual Atoms, Thanks To New Tech
electron microscopy
Biology
It's Now Easier To See Individual Atoms, Thanks To New Tech
With improved tech, two teams have sharpened cryo-electron microscopy to be able to see individual atoms.

With improved tech, two teams have sharpened cryo-electron microscopy to be able to see individual atoms.

Future of Medicine
New Drug Could Provide Long-Term HIV Prevention
hiv prevention
Future of Medicine
New Drug Could Provide Long-Term HIV Prevention
HIV prevention typically requires a daily pill. A new, injectable drug may be able to work for over a month at a time.

HIV prevention typically requires a daily pill. A new, injectable drug may be able to work for over a month at a time.

Robotics
This AI Robot Could Become Your Favorite Coworker
AI Robot
Robotics
This AI Robot Could Become Your Favorite Coworker
European researchers have developed an AI robot to safely work alongside humans, anticipating their needs and providing a strong pair of extra hands.

European researchers have developed an AI robot to safely work alongside humans, anticipating their needs and providing a strong pair of extra hands.

Dispatches
Living Drugs May Be the Key to Beating Genetic Disease
Living Drugs May Be the Key to Beating Genetic Disease
Dispatches
Living Drugs May Be the Key to Beating Genetic Disease
Engineering bacteria in the microbiome could fix previously untreatable genetic disorders.
By Pedro Belda Ferre

Engineering bacteria in the microbiome could fix previously untreatable genetic disorders.

Dispatches
Meet the 380 Trillion Viruses inside Your Body
Meet the 380 Trillion Viruses inside Your Body
Dispatches
Meet the 380 Trillion Viruses inside Your Body
Scientists aren't exactly sure yet what the "virome" is up to, but it's probably important.
By David Pride and Chandrabali Ghose

Scientists aren't exactly sure yet what the "virome" is up to, but it's probably important.

The New Space Race
The New Space Race is Here
The New Space Race is Here
The New Space Race
The New Space Race is Here
Our new show will introduce you to the people and the technology that could make humans a multi-planetary species...
By Mike Riggs

Our new show will introduce you to the people and the technology that could make humans a multi-planetary species in the coming century.