Skip to main content
Move the World.

For centuries, the best thing a doctor could do for someone who’d lost a limb was keep them from bleeding to death. This was done by applying a hot iron or boiling tar to the wound (without anaesthesia), up until 1718, when J. L. Petit invented the screw tourniquet (still no anaesthesia). But as medical knowledge grew, so too did our ability to treat amputations. We learned how to stop the bleeding without burning, how to disinfect the site of amputation, and how to anaesthetize patients.

But long after we’d discovered all those things, patients had very few options when it came to choosing substitutes for their original limbs. The prosthetic arm with a hook on the end, common still today, dates back to the 11th century. Prosthetic legs, meanwhile, didn’t change all that much from the renaissance until the early 20th century, when the aviator Marcel Desoutter lost his own leg and had the idea to craft a replacement using lightweight aluminum, rather than steel or wood.

Considering the slow evolution of prosthetics in the first two millennia of the common era, what we’ve seen in just the last 10 years--from both a functionality standpoint and an aesthetic one--is kind of mind-boggling. There’s Johnny’s arm, of course:

But there’s also Hugh Herr’s legs. Herr is the co-director of the Center for Extreme Bionics at MIT. When he was a teenager, he had both of his legs amputated below the knee after being stranded on a mountain and experiencing severe frostbite. The legs he wears now are arguably better than the ones he was born with. Here he is wearing them during a TED talk:

Hughgif1

And here’s a closer look:

Hughgif2

Herr’s legs enable to him to live just as fully as he did when he was biologically intact. Herr hasn’t just restored himself, however. His team also designed a prosthetic leg for Adrianne Haslet-Davis, who lost her left leg in the Boston Marathon Bombing. Here she is dancing publicly for the first time on her new leg:

Hughgif3

Herr’s vision for the future of bionics is technology so advanced that it doesn’t just repair broken bodies--it makes them better than they were before their injuries. “I believe the next step in bionics is to increase the mergence of the built design world with biological tissues, electrically, mechanically, and chemically,” Herr said in a recent Reddit AMA. “The fundamental science and technology that will enable this mergence will not only end many disabilities, but will also serve as the same foundation to enable human augmentation, extending capability beyond innate physiological levels.”

"The fundamental science and technology...will also serve as the same foundation to enable human augmentation, extending capability beyond innate physiological levels.”

The idea that prosthetics can make us better than normal is shared by most cutting edge bionics researchers. In an interview with Freethink, Michael P. McLoughlin of the Applied Physics Laboratory at Johns Hopkins, said that he wants to develop upper limb prostheses so advanced that we’re forced to consider whether these technologies provide an unfair advantage to the people who use them.

If you want to see more of Herr’s projects, you can check them out at BIONX, as well as at MIT’s Biomechatronics Group. And you should definitely watch Herr’s TED Talk, where you can see Haslet-Davis finish that dance:

https://youtu.be/CDsNZJTWw0w

The transformation in the bionics field isn’t just functional. We’re also seeing incredible shifts on the aesthetic front. And no one has broken more ground than industrial designer Scott Summit, whose work unites both form and function in a way that “invites engagement and connects the amputee with the world around.”

“If something feels medical, then we can only think of it as a medical adjunct,” Summit writes at his site. “If it instead complements the human form, taste and style, then it evolves from medical stopgap into something more human. It generates excitement, not pity.”

Summit accomplishes that paradigm shift with designs like these:

Credit: Scott Summit/summitID

“The goal,” Summit writes, “was to rethink the nature of a prosthetic leg, imbuing it with all the personalization of a bespoke fashion product, while recreating body symmetry on the wearer. A 3D scan of the contralateral leg creates symmetric reference geometry, and the wearer is queried for design and material input.”

The results were equally powerful: “Athletes played sports again, since the fairing offered utility in soccer and other sports. Amputees wore shorts or skirts again, since the leg was intended to be seen, not hidden. Amputees interacted more with the people around them, since the leg suddenly invited questions and comments, instead of awkward avoidance.”

Check out Summit’s TED Talk for his full take on making prosthetics equally appealing and functional:

https://youtu.be/fir5HI0Gwrc

And make sure to watch (and share!) our episode about the Applied Physics Lab at Johns Hopkins, and the arm they designed for Johnny Matheny.

More About

Superhuman
Advanced Prosthetics Are Not Only Powerful, They’re Beautiful
Advanced Prosthetics Are Not Only Powerful, They’re Beautiful
Superhuman
Advanced Prosthetics Are Not Only Powerful, They’re Beautiful
"There's a deep, deep relationship between the functionality of the device and a person's identity of what their body is."
By B. David Zarley

Before he was director of the Human Engineering Research Laboratories, Rory Cooper was customizing his own wheelchairs for racing. His racer was lighter than traditional chairs, optimized for racing on the road, but many of its modifications have since become commonplace in wheelchairs designed for everyday use. Cooper's chair demonstrated the importance of performance and functionality, ensuring that the user's quality of life is improved by restoring or augmenting…

Dispatches
A Tumor-Killing Virus Could Treat Eye Cancer and Save Children's Sight
A Tumor-Killing Virus Could Treat Eye Cancer and Save Children's Sight
Dispatches
A Tumor-Killing Virus Could Treat Eye Cancer and Save Children's Sight
The only treatment for retinoblastoma is surgical removal of the eye—but scientists may have found another way: cancer-killing viruses.
By Hemant Khanna

The only treatment for retinoblastoma is surgical removal of the eye—but scientists may have found another way: cancer-killing viruses.

Technology
The "Search Angel" Volunteers Reunite Birth Families
The "Search Angel" Volunteers Reunite Birth Families
Watch Now
Technology
The "Search Angel" Volunteers Reunite Birth Families
For some, not knowing their biological family can feel like a part of them is missing. The Search Squad is helping them for free.
Watch Now

These people are meeting biological relatives for the first time, thanks to a group of volunteers. The Search Squad group on Facebook has around 100 volunteer “search angels” who scour birth records and websites to find the birth relatives of adoptees. Many people who were adopted as children would like to meet their birth relatives, but it can often be an extremely expensive and time-consuming process. Search Squad, on the…

Superhuman
Reprogramming Your Immune System to Fight Cancer
Reprogramming Your Immune System to Fight Cancer
Watch Now
Superhuman
Reprogramming Your Immune System to Fight Cancer
Your T cells already know how to kill cancer. These doctors can train them to hunt it down.
Watch Now

Josh Feldman was on his honeymoon when he felt a lump on his neck. Returning home after the best month of his life, his doctor gave him the news: non-Hodgkin's lymphoma. There was no cure, and it was about to get much worse. After multiple rounds of chemotherapy failed to stop his tumors from growing, Josh went to see Dr. John Timmerman, an oncologist at UCLA who is trying something…

Dispatches
Genetic Tests Miss “Invisible” Mutations That Cause Disease and Neurological...
Genetic Tests Miss “Invisible” Mutations That Cause Disease and Neurological Disorders
Dispatches
Genetic Tests Miss “Invisible” Mutations That Cause Disease and Neurological...
There's more to your DNA than just letters, and mutations can lurk in that genetic "dark matter."
By Dan Bier

There's more to your DNA than just letters, and mutations can lurk in that genetic "dark matter."

Dispatches
Your DNA Is Not the Same in Every Cell
Your DNA Is Not the Same in Every Cell
Dispatches
Your DNA Is Not the Same in Every Cell
Your body began with a single cell and a single genetic code. But it didn't stay that way for long.
By Dan Bier

Your body began with a single cell and a single genetic code. But it didn't stay that way for long.

Dispatches
SpaceX Internet Is Coming
SpaceX Internet Is Coming
Dispatches
SpaceX Internet Is Coming
The Internet... in space! What's not to love?
By Dan Bier

The Internet... in space! What's not to love?

The New Space Race
Preparing the First Space Colonizers for Life Off of Planet Earth
Preparing the First Space Colonizers for Life Off of Planet Earth
The New Space Race
Preparing the First Space Colonizers for Life Off of Planet Earth
It’s only a matter of time until the average person can explore space. But, will the average person be ready?
By Mike Riggs

It’s only a matter of time until the average person can explore space. But, will the average person be ready?