Skip to main content
Move the World.
Scientists Physically "Transplant" a Memory in Snails
David Glanzman, senior author of the study, holding a marine snail. Credit: Christelle Snow/UCLA

The physical basis for memory is a mystery, but it's long been thought to be simply a pattern of signals played across the synapses between brain cells. But an experiment at UCLA suggests that at least some information is stored inside brain cells, in RNA—and you can physically extract it and transfer it into another organism. This discovery could potentially fill in many of the gaps in our theory of how memories are created, stored, recalled, and ultimately lost.

Memory Music: You know that maddening feeling where you can almost-but-not-quite remember something? Concentrating, squeezing your eyes shut, maybe even gripping your head—you know it's in there, somewhere! The entire field of neuropsychology has been doing that for decades now, on a frustrating quest to figure out precisely where our memories are in the brain.

We know memory is a physical phenomenon—it can be lost through physical damage and diseases like Alzheimer's—but the brain is complicated, and it could potentially store information in lots of different ways. Memory storage has something to do with the physical structure of synapses between brain cells, and with the patterns of chemical and electrical signals that fire across them. In that view, memory is less like a box of papers and more like music playing over the brain—a pattern of activity, rather than a physical thing. But a few scientists think that information from our experiences could also be coded and stored inside neurons using RNA, the chemical that transcribes DNA and does other important tasks inside the cell.

It's as though we transferred the memory.

David GlanzmanUCLA Brain Research Institute

The Experiment: To test the RNA theory, biologists at UCLA trained marine snails by giving them electric shocks. Trained snails learned to be more sensitive to being touched, as a defense mechanism. A snail that has been shocked will contract for about 50 seconds after being tapped, whereas a normal snail will only contract for about one second. After waiting a day, researchers then extracted RNA from the nervous system of the trained snails and injected it into a test group. The test snails showed the same defensive reflex as the trained group, contracting for about 40 seconds—they "remembered" shocks that happened to their RNA donor, and behaved accordingly. A transfer from a control group did not cause any changes in behavior.

Hmm… Is That Really "Memory"? To narrow down how the RNA was affecting the snails, the scientists extracted motor neurons, which are responsible for actually causing the physical contraction, and sensory neurons, which are responsible for experience. The cells were placed in a Petri dish and then treated with RNA from trained snails and untrained snails. The trained RNA caused "increased excitability" in the sensory neurons—just like in snails that are being shocked directly—but not in the motor neurons. (The untrained snail RNA caused no changes at all.) The authors believe this means that RNA is transferring something experiential, not simply a chemical that makes it easier for motor neurons to cause contractions.

The Upshot: The study is intriguing, and the authors naturally think it's a smoking gun that memory is stored inside brain cells. "If memories were stored at synapses, there is no way our experiment would have worked," says the lead UCLA researcher, David Glanzman. But it's important to keep it in perspective. We don't really know what kind of RNA is causing the behavior (there are several types), or what changed about it in the electrocuted snails.

We also don't know how common this type of storage might be, or what kinds of experiences or behavioral responses might be retained this way. After all, "contract when startled" is pretty simple compared to, say, kung fu, who your cousin is, or even where you left your keys. Until we know more, there's no reason to abandon the traditional view that memory is at least mostly a function of patterns in brain activity. But this extra component might help fill in some of the gaps in how we understand and treat brain disorders.

I think in the not-too-distant future, we could potentially use RNA to ameliorate the effects of Alzheimer's disease or post-traumatic stress disorder.

David GlanzmanUCLA Brain Research Institute

Up Next

Genetics
This Databank of Mammalian Genomes Is the Noah’s Ark of DNA
mammalian genomes
Genetics
This Databank of Mammalian Genomes Is the Noah’s Ark of DNA
The Zoonomia Project is the largest database of mammalian genomes to date, and it’s already helping researchers study SARS-CoV-2 and extinction risk.

The Zoonomia Project is the largest database of mammalian genomes to date, and it’s already helping researchers study SARS-CoV-2 and extinction risk.

Citizen Science
Help Scientists Figure Out Whether Brain Training Apps Work
brain training
Citizen Science
Help Scientists Figure Out Whether Brain Training Apps Work
To figure out how people might benefit from brain training apps, researchers are looking for 30,000 volunteers willing to play brain games science.

To figure out how people might benefit from brain training apps, researchers are looking for 30,000 volunteers willing to play brain games science.

Ancient Life
Researchers Discover Living 100-Million-Year-Old Microbes
deep sea microbes
Ancient Life
Researchers Discover Living 100-Million-Year-Old Microbes
Researchers have found microbes in deep sea sediment millions of years old. Given food, they sprung back to life.

Researchers have found microbes in deep sea sediment millions of years old. Given food, they sprung back to life.

Robotics
The Coronavirus Hospital Staffed by Robots
coronavirus hospital
Robotics
The Coronavirus Hospital Staffed by Robots
A robot-run coronavirus hospital in Wuhan, China, is just one remarkable example of how technology is helping combat the global COVID-19 outbreak.

A robot-run coronavirus hospital in Wuhan, China, is just one remarkable example of how technology is helping combat the global COVID-19 outbreak.

Future of Medicine
Unlocking the Mysteries of Muscles in Motion
Unlocking the Mysteries of Muscles in Motion
Future of Medicine
Unlocking the Mysteries of Muscles in Motion
New kirigami-inspired skin patch may help people avoid injury, as it expands our understanding of muscle activity.
By Caroline Delbert

New kirigami-inspired skin patch may help people avoid injury, as it expands our understanding of muscle activity.

Meet the Amateur Astronomer Who Found a Lost NASA Satellite
Meet the Amateur Astronomer Who Found a Lost NASA Satellite
Watch Now
Meet the Amateur Astronomer Who Found a Lost NASA Satellite
A $130 million satellite vanished. Over a decade later, a blogger/astronomer found it.
Watch Now

Amateur astronomer Scott Tilley made international headlines when he rediscovered NASA’s IMAGE satellite, 13 years after it mysteriously disappeared. In this interview with Freethink, Scott discusses his role in the satellite’s recovery, why he enjoys amateur astronomy, and how citizen scientists like him have contributed to our knowledge of space from the space race to the present day.

Dispatches
Does CRISPR Cause Cancer?
Does CRISPR Cause Cancer?
Dispatches
Does CRISPR Cause Cancer?
Two studies find that CRISPR'd cells tend to become cancerous. Here's what that means for biotech medicine.

Two studies find that CRISPR'd cells tend to become cancerous. Here's what that means for biotech medicine.

The New Space Race
The New Space Race is Here
The New Space Race is Here
The New Space Race
The New Space Race is Here
Our new show will introduce you to the people and the technology that could make humans a multi-planetary species...
By Mike Riggs

Our new show will introduce you to the people and the technology that could make humans a multi-planetary species in the coming century.

How Do We Scale Bionic Technology?
Bionic technology and exoskeletons in the workplace
How Do We Scale Bionic Technology?
Right now, assistive bionic technology is really cool and really expensive. This is how it will get better and...
By Mike Riggs

Right now, assistive bionic technology is really cool and really expensive. This is how it will get better and cheaper.