New solar cells could be a breakthrough in clean energy

Researchers are developing new ways to allow solar cells to harness more light and be made cheaper.

A pair of recent innovations may dramatically improve the efficiency of solar cells, as well as making them hardier and more cost effective, The Independent reports. 

Solar cells work by absorbing light waves, harnessing the photons’ energy to knock electrons off of atoms, thereby generating electricity. 

Here’s the thing, though: different light waves have different levels of energy, and current solar cells can’t use low-frequency wavelengths of light. 

Light moves along a spectrum that encompasses ranges of frequencies we can’t see, like ultraviolet light — which allows Horatio Caine to find blood spatter— and infrared light, which allows the Predator to hunt you down in darkness and thick foliage.

Infrared is a lower frequency than visible light, meaning it’s less energetic. 

“Most solar cells … are made from silicon, which cannot respond to light less energetic than the near infrared,” Tim Schmidt, a professor at UNSW Sydney, told The Independent.  

The researchers’ solution, published in Nature Photonics, is to use minuscule semiconductors — called quantum dots — to absorb this low-energy light. 

The quantum dots then use oxygen to upconvert the light waves into higher frequencies, and, voila, you’ve got light that a solar cell can now turn into power.

The other new innovation, published in Nature Energy by a team of researchers based in Japan and China, involves optimizing not the light but the solar cells themselves.

Using a type of material called perovskite, these researchers are developing a next generation of solar cells. Perovskites are flexible, lightweight, and — crucially — cheaper to make than the silicon cells currently used.

Perovskites have an issue, though: it’s tough to make large solar cells from them.

“Scaling up is very demanding,” OIST‘s Luis Ono told The Independent. “Any defects in the material become more pronounced (at larger sizes) so you need high-quality materials and better fabrication techniques.”

The researcher’s solution is to use multiple layers of the material in making larger solar cells, keeping energy loss to a minimum and reducing the risk of toxins leaking from the cells.

The next step is testing it on larger panels, with commercialization — and a brighter (ugh, sorry) future — hopefully in the cards.

Related
US will accelerate geothermal exploration on federal land
The Bureau of Land Management is taking steps to make it easier for public lands to be considered for geothermal power systems.
World’s biggest battery maker unveils grid-scale storage system
CATL, the world’s biggest battery manufacturer, just unveiled TENER, a new energy storage system for utility companies.
Future nuclear power reactors could rely on molten salts — but what about corrosion?
Proton irradiation decreases the rate of corrosion in certain metal alloys — potentially good news for promising nuclear power reactors .
Why aren’t there solar-powered cars?
There are a number of reasons why solar-powered cars aren’t an option for everyday travel, at least not yet.
Why batteries come in so many sizes and shapes
Despite all working the same way, batteries are made in different sizes and shapes for reasons of cost and how easy they are to make.
Up Next
energy efficient homes
Subscribe to Freethink for more great stories