Skip to main content
Move the World.

The Emerging Cyborg

The world of prosthetics is evolving quickly. It’s no question that researchers, doctors, and engineers want to design more effective robotic limbs that can help paralyzed and amputees live not only more comfortably, but more normal lives. The question is - how?

Prosthetics have come to life in a variety of ways, with recent evolvements looking more like a sci-fi depiction of the future. And most of this technology is designed to mimic our body and bring back the function that was lost.

But what if we went further? What if instead of relying on our body to control the technology, we decided to let the technology think for itself? That’s exactly what Dr. Tommaso Lenzi and his researchers at University of Utah’s Bionic Engineering Lab decided to bring to life. And their AI-powered bionic leg will change the future of advanced prosthetics.

A glimpse into the artificial intelligence powered bionic leg.
A glimpse into the artificial intelligence powered bionic leg.



Meet the Alec McMorris, the Emerging Cyborg

Today, Alec is a high school football coach, a patient advocate at Fit Prosthetics, and also the test subject for one of the most advanced robotic limbs on the planet. How did he get here?

Alec with his passive prosthetic leg. The AI powered bionic leg has only gone outside of the lab once - for the filming of this episode. When not in the lab for testing, Alec must wear this leg.
Alec with his passive prosthetic leg. The AI powered bionic leg has only gone outside of the lab once - for the filming of this episode. When not in the lab for testing, Alec must wear this leg.

In 2013, Alec was on his way to work on a cold Utah morning, when he saw his cousin crash his car ahead. Alec stopped to help, getting out of his car, and was struck by another out of control driver, moving at 85 MPH.

Alec was on life support for 5 days, suffering from severe internal and external injuries, a tear in his heart, and an infection in his leg. Alec’s right leg was eventually amputated. As Alec says, "I should have died. I should have died multiple times." In a position that most would find completely debilitating, Alec found purpose.

"When you have been through something so traumatic and lost a limb - literally, a piece of you - then you know, I have to have some sort of purpose here."

Alec McMorris

In this episode, our crew had the chance to see Alec in Dr. Lenzi’s lab, testing one of the world’s most advanced prosthetics in ways that have never been done before. Normally, Alec wears a passive prosthetic. But today, when he steps into Dr. Lenzi’s lab, he trades his conventional leg for an AI-powered bionic leg, with the goal of bringing new freedom to amputees.

Understanding the Limitations of Existing Prosthetic Legs

The most basic artificial limb is a passive prosthetic - one that is considered a cosmetic restoration, but provides no more than basic function back to its user. Think, a leg to support standing, or an arm to fill out normal clothing. Recently, powered prosthetics have become more used. They depend on the user to manually control, usually in the form of exaggerated body movements, and provide more function back to amputees.

Powered prosthetics are conventionally made to mimic their biological counterparts in terms of weight and power output. It seems fair - if someone has lost a limb, why not create an exact replica that the user can control? One of the main problems with this is that powered prosthetic devices don’t make much improvement on the functionality of passive prosthetic limbs. And in many cases, both passive and powered prosthetics actually slowed users down and caused physical strain to other parts of the body.

While on set with Alec, he explained some of the limitations trying to do something as seemingly simple as stepping over a small obstacle with his passive prosthetic leg. "If I’m going to step over (something) it’s a big swing over... or a step over and get high clearance on the back… Doing things like this, you know, that’s putting strain here, on my back, my hips, everything.”

Dr. Lenzi refers to Alec as a collaborator rather than just a test subject.
Dr. Lenzi refers to Alec as a collaborator rather than just a test subject.

What Sets This Bionic Leg Apart?

"The way we win at this game is by taking an approach that’s completely different from our biological leg... We decided to give a brain to the bionic leg."

Dr. Tommaso Lenzi

Dr. Lenzi decided to challenge the conventional approach to prosthetics. To develop the robotic leg you see today, he made two major fundamental changes.

1 - Dr. Lenzi decided to create a powered prosthesis that is even lighter than a biological human leg. His leg is nearly half the weight of any comparable powered prosthesis.

2 - Where most prosthetics are controlled by the user - either manually or through sensory detecting nerve cuffs - Dr. Lenzi is letting the leg think for itself.

Essentially, Dr. Lenzi’s bionic leg is a lightweight, autonomous device that works symbiotically with its user by reading their normal body movements.

Sarah Hood, a Ph.D. Candidate at Utah’s Bionic Engineering Lab is working with Dr. Lenzi specifically on the interaction between the robot and humans.

"We’ve got an amputee coming in to walk on a robot. And that kind of sounds crazy when you put it in those words. Someone’s gonna come in and put their weight on it. And you have to believe 100% in the work that you’ve done."

Sarah Hood , Ph.D. Candidate
Inside Dr. Lenzi's lightweight bionic leg.
Inside Dr. Lenzi's lightweight bionic leg.

The Future for Advanced Prosthetics

Alec McMorris is more than a simple test subject of an engineering advancement. He’s seen as a collaborator for the University of Utah’s Bionic Engineering Lab, helping to define the path for the future of mobility. Alec says his job in this study is to give people hope. He goes on to say "'Amplified humans' is going to be a thing. And the fact that I get to see all of that before it happens, it’s magical."

The future for Dr. Lenzi's bionic leg is promising. Lighter and more powerful than a biological leg, this robotic option has the potential to provide its user with abilities potentially not available to the regular body. And it has all of asking, when can people get their hands on this leg?

"I believe that we are the generation that will see physical disability disappear."

Dr. Tommaso Lenzi

For more inspirational stories about the amazing advances in medical innovation, check out our whole Superhuman Show now. For another Superhuman defying limits, meet Jason Barnes. Jason lost his arm in a horrible accident... and then he became the fastest drummer in the world. Watch more below:

Subscribe

More From Superhuman

Amazing advances in medical innovation
Superhuman
3-D Printing Prosthetics for Kids
3-D Printing Prosthetics for Kids
Watch Now
Superhuman
3-D Printing Prosthetics for Kids
The incredible movement of shared designs and tech that’s making prosthetics better and cheaper for everyone.
Watch Now

Powered by 3D printer technology, people are making prosthetics at a fraction of the cost. Watch this episode of “Superhuman” for the story of how e-NABLE, an online network of volunteers, has created 3,000 bionic hands for people in need (mostly kids) across 90 countries.

Superhuman
Brain Implant Gives Quadriplegic Movement
Brain Implant Gives Quadriplegic Movement
Watch Now
Superhuman
Brain Implant Gives Quadriplegic Movement
A brain implant connected to electrodes could offer hope to those who have lost function in their limbs.
Watch Now

A brain implant connected to electrodes could offer hope to those who have lost function in their limbs.A tragic diving accident while on vacation left Ian Burkhart unable to move most of his body. But a brain implant connected to electrodes on his arm restored his ability to move his fingers and could offer hope to those who have lost function in their limbs.

Superhuman
Gaining Independence with the World's Most Advanced Prosthetic Arm
Gaining Independence with the World's Most Advanced Prosthetic Arm
Watch Now
Superhuman
Gaining Independence with the World's Most Advanced Prosthetic Arm
Jerral was hit by a roadside bomb in Iraq and left paralyzed. Now he's partnering with researchers to regain his independence. »
Watch Now

Jerral was serving in Iraq, his tank was hit by a roadside bomb. The attack left him paralyzed and without his left arm. But rather than letting his injuries define him, Jerral is fighting back with the help of the world’s most advanced prosthetic arm. He’s working with a team of researchers from Johns Hopkins to test the arm that could help Jerral and many other wounded vets like him…

Superhuman
Reversing Blindness
Reversing Blindness
Watch Now
Superhuman
Reversing Blindness
Vanna was legally blind. Now she can see. Hear her inspiring story and meet the amazing doctors who gave her back her sight.
Watch Now

Vanna started to notice a change in her vision. Six months later, she was legally blind. But Vanna never lost hope, and enrolled in an experimental clinical trial. Her doctors injected stem cells from her hip into her optic nerve. Afterwards, she started to regain her vision. Amazingly, Vanna can now see. This is the story of reversing blindness.

Superhuman
A Life Changed by Robotic Legs
A Life Changed by Robotic Legs
Watch Now
Superhuman
A Life Changed by Robotic Legs
Robert is paralyzed. But thanks to a robotic exoskeleton, he can walk again.
Watch Now

After an accident, Robert Woo was paralyzed from the chest down. Woo spent the next four years in a wheelchair and in therapy. But even as he learned how to live his new life, he couldn’t stop asking one very simple question: How could humans build skyscrapers, but not something better than a wheelchair? Then Woo heard about bionic exoskeletons. And it changed his life.

Superhuman
The Real Bionic Man
The Real Bionic Man
Watch Now
Superhuman
The Real Bionic Man
After losing part of his arm to cancer, Johnny now has one of the world's most advanced prosthetics.
Watch Now

After losing part of his arm to cancer, doctors outfit Johnny, a self-described “hillbilly” from West Virginia, with one of the world’s most advanced robotic arms. Johnny is able to control his new arm with his mind, giving him a level of motor control impossible until now.

Superhuman
Open Sourcing the Brain
Open Sourcing the Brain
Watch Now
Superhuman
Open Sourcing the Brain
Open BCI has developed a 3D-printed headset that allows your brain to interact with computers in amazing ways.
Watch Now

OpenBCI has developed a 3D-printed headset that allows our brains to interact with software. Want to measure the effect of meditation on your brain? It's possible. Want to control a prosthetic limb with your mind? It's possible. Right now, the only thing OpenBCI's tech can't do are the things we haven't thought of.

Superhuman
The Promise of Gene Therapy
The Promise of Gene Therapy
Watch Now
Superhuman
The Promise of Gene Therapy
When Karen was told her daughter had an incurable disease, she started a gene therapy company to find a cure.
Watch Now

When doctors told Karen there was no cure for her daughter’s brain disease, she took matters into her own hands. With no scientific background, she created a gene therapy business that can fix the faulty genes in patients like her daughter. Now she’s racing against the clock to extend her daughter’s life and improve the lives of others.

Superhuman
Superhuman Trailer
Superhuman Trailer
Watch Now
Superhuman
Superhuman Trailer
Join us as we meet the innovators building our superhuman future.
Watch Now

Superhuman is a Freethink original series about the amazing advances in medical innovation that are making the present look more like a sci-fi depiction of the future. Join us as we meet the engineers, entrepreneurs, doctors and patients who are giving people a new lease on life today, while building our superhuman future of tomorrow.