Skip to main content
Move the World.
living with diabetes

Lead image © James633 / Adobe Stock

Living with diabetes is a lot of work. Most people with type 2 diabetes manage the condition by monitoring their blood sugar levels, diet, exercise, and insulin therapy — self-administered insulin injections into the fat under the skin. If it's not properly managed, diabetes can lead to amputation or blindness, and it is one of the top ten causes of death in the U.S., according to the CDC.

Now, new research has found that a single surgical injection of a protein into the brain can restore blood sugar levels and send diabetes into remission — for rodents. Researchers are just starting to understand why.

Repairing Neural Networks Damaged by Diabetes

Previous work on rodents showed that one injection of a protein called fibroblast growth factor 1 (FGF1) could stabilize blood sugar levels for weeks, sometimes longer. Understanding how this happens could translate into human therapies for diabetes, mitigating the condition by harnessing the brain's intrinsic ability to regulate blood sugar.

Yet much of the function behind that process remained unclear. But two new articles in Nature Communications and Nature Metabolism identify the complex dynamics of the brain's reaction to FGF1.

"Until recently, the brain's ability to normalize elevated blood sugar levels in diabetic animals was unrecognized," Michael Schwartz, professor of medicine at the University of Washington School of Medicine, said. "Our international teams' latest findings chart a path towards a more complete understanding how this effect is achieved."

The research looked closely at the hypothalamus — the brain region that controls hunger and fullness signals and regulates blood sugar levels.

One study looked at changes in gene expression in brain cells before and after FGF1 injections. The other study investigated how the brain can maintain diabetic remission by looking at "perineuronal nets," a group of neurons involved in blood sugar control. These neurons are scarce in the hypothalamus of diabetic rats, and more abundant in those with normal blood sugar levels. Together, the teams found that FGF1 restores diabetes-damaged perineuronal networks — something that is critical to maintaining diabetes remission.

Hope for Remission

More than 30 million U.S. adults are living with diabetes. It can cause severe complications like vision loss, stroke, amputation of toes or feet, and heart disease. It can be managed with a rigorous diet, exercise, and continuously monitoring blood sugar levels. But, for many, this regimen is stressful and difficult to maintain. This new research could help people with diabetes achieve long-term remission.

"These insights may one day inform therapeutic strategies for inducing sustained diabetes remission..."

Michael Schwartz

"These insights," he said, "may one day inform therapeutic strategies for inducing sustained diabetes remission, rather than simply lowering blood sugar levels on a day-to-day basis as current treatments do," Schwartz, who was an author on both studies, said.

There is hope for people living with diabetes. Research is getting creative: from using smartphones to detect diabetes, to finding ways to reverse the disease. The team thinks this work could lead to new ways of treating people living with diabetes and avenues for achieving long-term remission.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Up Next

CRISPR
Scientists Use CRISPR to Reverse Diabetes in Mice
reverse diabetes
CRISPR
Scientists Use CRISPR to Reverse Diabetes in Mice
Scientists have used CRISPR to correct a diabetes-causing mutation in stem cells and then use those cells to reverse diabetes in mice.

Scientists have used CRISPR to correct a diabetes-causing mutation in stem cells and then use those cells to reverse diabetes in mice.

Dispatches
How Coffee Could Treat Diabetes
How Coffee Could Treat Diabetes
Dispatches
How Coffee Could Treat Diabetes
Someday, diabetics could use caffeine to trigger insulin production, thanks to specially designed kidney cells.

Someday, diabetics could use caffeine to trigger insulin production, thanks to specially designed kidney cells.

DIY
Treating Diabetes with a DIY Pancreas
Treating Diabetes with a DIY Pancreas
Watch Now
DIY
Treating Diabetes with a DIY Pancreas
A group of coders created an open source, DIY pancreas to help people with diabetes manage their condition.
Watch Now

Diabetes is a high maintenance and high stakes disease requiring constant monitoring and precise decision-making. What if we could outsource that workload to a machine? That’s what one couple decided to do. They made a homemade pancreas that eases the burden of diabetes care… and then released the design to the public for free.

Healthcare
Using Smartphone Cameras to Detect Diabetes
Detect Diabetes
Healthcare
Using Smartphone Cameras to Detect Diabetes
A new algorithm can detect diabetes using data collected by a smartphone’s camera, offering a way to address the problem of undiagnosed diabetes.

A new algorithm can detect diabetes using data collected by a smartphone’s camera, offering a way to address the problem of undiagnosed diabetes.

Dispatches
Insulin Pills Could Change Everything for Diabetics
insulin pills
Dispatches
Insulin Pills Could Change Everything for Diabetics
A pill instead of a needle would be the "holy grail" for diabetes treatment.

A pill instead of a needle would be the "holy grail" for diabetes treatment.

Robotics
Japan Automates Construction With the First Bot-Built Dam
robots taking over jobs
Robotics
Japan Automates Construction With the First Bot-Built Dam
A Japanese construction company has robots taking over jobs that are understaffed, due to a labor shortage.

A Japanese construction company has robots taking over jobs that are understaffed, due to a labor shortage.

Superhuman
Brain Implant Gives Quadriplegic Movement
Brain Implant Gives Quadriplegic Movement
Watch Now
Superhuman
Brain Implant Gives Quadriplegic Movement
A brain implant connected to electrodes could offer hope to those who have lost function in their limbs.
Watch Now

A brain implant connected to electrodes could offer hope to those who have lost function in their limbs.A tragic diving accident while on vacation left Ian Burkhart unable to move most of his body. But a brain implant connected to electrodes on his arm restored his ability to move his fingers and could offer hope to those who have lost function in their limbs.

Can an Algorithm Catch a Serial Killer?
Can an Algorithm Catch a Serial Killer?
Watch Now
Can an Algorithm Catch a Serial Killer?
A self-professed data nerd, Thomas Hargrove believes everything around us is following a mathematical formula...including murder.
Watch Now

A self-professed data nerd, Thomas Hargrove believes everything around us is following a mathematical formula...including murder. Hargrove wanted to find a way to use data to solve cold cases and identify potential serial killers that have gone unnoticed. Armed with public homicide records, he created an algorithm that can spot similar patterns across different cases. Each cluster is given an unique identifier -- what he...

Using Fashion to Fool Facial Recognition
Using Fashion to Fool Facial Recognition
Watch Now
Using Fashion to Fool Facial Recognition
Facial recognition software is everywhere - and being used for surveillance. One fashion designer is coming up with looks that fool the software.
Watch Now

With the use of facial recognition technology on the rise, privacy advocates are increasingly concerned about the potential for misuse. Artist Adam Harvey is working to show how fashion can be used to fool facial recognition technology. His most recent project, CV Dazzle, is a scarf with fabric that looks like camouflage but contains elements that mimic a human face. These elements can successfully confuse the software...