Skip to main content
Move the World.
medical nanobots

Lead image courtesy of Kateryna_Kon / Adobe Stock.

Nanomachines are entering new territory — the human body.

A new breed of tiny machines can carry out tasks in the smallest corners of the body — cells. These medical nanobots have the potential to act as smart drug delivery systems, carrying drugs to infected cells while bypassing healthy ones.

Take cancer, for example. The disease is caused by gene damage that makes cells divide rapidly. Chemotherapy is often an effective treatment because it attacks and kills dividing cells. On the downside, chemo still attacks some healthy cells in the crossfire, causing hair loss, nausea, and easy bruising. Chemo can’t tell healthy cells apart from cancerous cells. It just kills anything that divides faster than normal.

“Instead of talking about a simple chemical that does the same thing everywhere, you’re now talking about a machine that can sense and respond to the environment.”

Si-ping Han,Bioengineer at the City of Hope National Medical Center

But what if tiny medical nanobots could sense their environment and bring drugs only to diseased cells? Si-ping Han, a bioengineer at the City of Hope National Medical Center in Duarte, California, says this is likely to soon be a reality. He expects to see medical nanobots ready for human clinical trials in the next few years.

“The current state of the field is on the cusp of entering into real applications,” he says, commenting on the field of nanorobots in medicine. “You’ll see new types of structures that can go into cells, examine the genes that are being expressed in the cells and react to them.”

But for that to happen, Han says our current drugs need a new type of smarts. The nanomachines will need to sense cells’ biochemical environment, diagnose their disease state, and then respond by triggering a drug activity. They do that, scientists engineer DNA to fold into a shape like origami. Once deployed in the body, a DNA nanobot acts like a tiny molecular motor that seeks out unhealthy cells, like cancer, and injects them with a deadly payload.

In 2018, researchers demonstrated that these medical nanobots had the potential to cure cancer, in mice, by delivering a drug directly to cancerous cells, effectively choking off their blood supply.

“Instead of talking about a simple chemical that does the same thing everywhere, you’re now talking about a machine that can sense and respond to the environment,” Han says.

Even though medical nanobots have only been proven in animal studies, so far, they show major promise for humans. These tiny, cancer-killing smart missiles could be a huge breakthrough for cancer treatment, thanks to the nanomachines’ precision. By steering clear of healthy cells, patients can combat their cancer more aggressively, hitting it harder and longer, without the side effects that often interrupt treatment.

Up Next

Mental Health
New Algorithm Gives Trauma Survivors a "PTSD Risk Score"
PTSD Risk Score
Mental Health
New Algorithm Gives Trauma Survivors a "PTSD Risk Score"
A newly developed algorithm calculates a "PTSD Risk Score" for people seeking treatment for traumatic injuries.

A newly developed algorithm calculates a "PTSD Risk Score" for people seeking treatment for traumatic injuries.

Dope Science
Psychedelic Toad Venom Explained
toad venom
Dope Science
Psychedelic Toad Venom Explained
5-MeO-DMT, a psychedelic found in toad venom, causes mushroom-intense trips that are over quick. Could it have more accessible therapeutic potential?

5-MeO-DMT, a psychedelic found in toad venom, causes mushroom-intense trips that are over quick. Could it have more accessible therapeutic potential?

Animals
Battling a Locust Swarm From Space
Locust Swarm
Animals
Battling a Locust Swarm From Space
Using data from NASA satellites, researchers are scouring East Africa for areas where a desert locust swarm might be born — so they can destroy the eggs.

Using data from NASA satellites, researchers are scouring East Africa for areas where a desert locust swarm might be born — so they can destroy the eggs.

Uprising
Robot Bees Could One Day Save Your Life
robot bees
Uprising
Robot Bees Could One Day Save Your Life
For the first time, a microbot powered by soft actuators has achieved controlled flight.

For the first time, a microbot powered by soft actuators has achieved controlled flight.

Uprising
The Construction Robots Building Space Colonies
contruction robots
Uprising
The Construction Robots Building Space Colonies
Sending construction robots into outer space will help pave the way for human exploration, but there are some real challenges that lie ahead.
By Tien Nguyen

Sending construction robots into outer space will help pave the way for human exploration, but there are some real challenges that lie ahead.

Opinion
A Molecular Biologist Discusses the Morality of Genetic Engineering
A Molecular Biologist Discusses the Morality of Gene Editing
Opinion
A Molecular Biologist Discusses the Morality of Genetic Engineering
Molecular biologist Daisy Robinton speaks out on our moral imperative to solve some of humanity's greatest health threats.
By Daisy Robinton, Ph.D.

Molecular biologist Daisy Robinton speaks out on our moral imperative to solve some of humanity's greatest health threats.

Dispatches
GMO Mosquitoes Could Be Our Best New Weapon against Disease
GMO Mosquitoes Could Be Our Best New Weapon against Disease
Dispatches
GMO Mosquitoes Could Be Our Best New Weapon against Disease
It sounds like science fiction, but it could save millions of lives.
By Jason Rasgon

It sounds like science fiction, but it could save millions of lives.