Skip to main content
Move the World.
search and rescue

Lead Image © icholakov / Adobe Stock

A search and rescue operation at sea comes down to one thing: time.

As people spend more time in the water, their chance of survival plummets. And rescuers face immense challenges — the weather, the surface conditions, the currents, the sheer enormity of the sea — as well as the clock.

Modern search and rescue operations can use complex ocean models and weather forecasting data to try to predict where people and objects will drift in the ocean.

But according to the Swiss Federal Institute of Technology in Zurich (ETH Zurich), those standard algorithms become less useful in coastal search and rescue operations, as mercurial waters near the shore and incomplete datasets mean that algorithms often can't predict where drifting survivors will end up.

That could mean the difference between life and death.

Now, a team led by ETH professor of nonlinear dynamics George Haller is looking to save lives with a new model for search and rescue missions in those chaotic coastal waters.

Using mathematical tools developed for "dynamical systems theory" — i.e., teasing out the behavior of complex, shifting systems, like the ocean — and better data, their algorithm — published in Nature Communications — predicts where people and objects will drift closer to the shore.

The math revealed to Heller's team that floating objects off the coast gather along certain curves, dubbed "TRansient Attracting Profiles" (TRAPs). TRAPs are hidden from plain sight, but they cannot hide from math — and the ETH algorithm can identify and track them in real time.

That real time ability is absolutely crucial for search and rescue and emergency response models.

Working with MIT, the Woods Hole Oceanographic Institution, and the U.S. Coast Guard, EHT put their algorithm to the test in the waters off Martha's Vineyard.

Using the same real time data available to the Coast Guard, the EHT algorithm soon identified the TRAPs of the Massachusetts coast. Buoys and manikins dropped into the Atlantic quickly congregated on the snaking lines.

It's a promising test run for a tool which may improve search and rescue operations in the near future.

"Our hope is that this method will become a standard part of the toolkit of coast guards everywhere."

George Haller

"Our results are rapidly obtained, easy to interpret, and cheap to implement," Mattia Serra told ETH News. A Harvard postdoc, Serra received his PhD at EHT and is first author on the paper.

Next up is testing the model in other locations. "Our hope is that this method will become a standard part of the toolkit of coast guards everywhere," Haller told ETH News.

The team also believes their new algorithm has the potential to aid in search and rescue missions on an ecological scale: it may be able to help predict the path of oil spills.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected]

Up Next

Emergency Response
Real-Time Data Can Save Lives in a Disaster
emergency response
Emergency Response
Real-Time Data Can Save Lives in a Disaster
Researchers are working on new algorithms that could provide emergency response managers with real-time data to save more lives.

Researchers are working on new algorithms that could provide emergency response managers with real-time data to save more lives.

How Drones are Changing Disaster Relief
How Drones are Changing Disaster Relief
Watch Now
How Drones are Changing Disaster Relief
As Hurricane Florence hits, here's a look at how drones are changing disaster relief.
Watch Now

Drone technology is fundamentally changing the way we respond to natural disasters. In the aftermath of Hurricane Harvey, rescue teams used drones extensively to map and triage affected areas, while utility and cellular providers used them to inspect damage and prioritize repairs. Cheap to operate and with the ability to cover widespread areas, drones are changing the game when it comes to cleaning up disaster zones. ...

Uprising
Can Humans Figure Out How Deep Learning AI Thinks?
deep learning ai
Uprising
Can Humans Figure Out How Deep Learning AI Thinks?
Deep learning AI is becoming more complex, capable, and impenetrable, but these scientists are attempting to break the black box.

Deep learning AI is becoming more complex, capable, and impenetrable, but these scientists are attempting to break the black box.

Dangerous Jobs
The Dangerous Job of the International Ice Patrol
iceberg ice patrol
Dangerous Jobs
The Dangerous Job of the International Ice Patrol
The International Ice Patrol is a real thing. They're protecting our ships from iceberg collisions.

The International Ice Patrol is a real thing. They're protecting our ships from iceberg collisions.

Dispatches
Can DIY Science (Finally) Cut the Cost of Insulin?
Can DIY Science (Finally) Cut the Cost of Insulin?
Dispatches
Can DIY Science (Finally) Cut the Cost of Insulin?
A century after its discovery, insulin is still incredibly expensive, but DIY bio-manufacturing could change that...

A century after its discovery, insulin is still incredibly expensive, but DIY bio-manufacturing could change that in a big way.

Using Neuroscience to Talk to People in a Vegetative State
What is a vegetative state?
Watch Now
Using Neuroscience to Talk to People in a Vegetative State
A scientist figures out how to talk to the brain when the body won't respond.
Watch Now

People who suffer extreme brain trauma sometimes fall into what is known as a "persistent vegetative state." What is a vegetative state and how is it different from a coma? Unlike a coma, where the patient is completely immobile and unconscious, people in a vegetative state will sleep, wake, and open their eyes — without showing any sign of awareness or consciousness. They don't speak, move on their own, or respond to...

Why Researchers Built a Robot Snake
Why Researchers Built a Robot Snake
Watch Now
Why Researchers Built a Robot Snake
Believe it or not, there's a good reason this robot snake exists
Watch Now

When building robots, scientists often struggle to perfect the robot's movements. They turn to the natural world in order to solve this problem, finding inspiration from animals such as spiders, dogs, and even humans. However, studies show that even though we live in a world that is largely built for humans, robots that appear to be too "human-like" make people uneasy. Thus, researchers at Carnegie Melon developed a...