New solid-state lithium battery can be recharged 10,000 times

The lithium-metal battery could increase the lifetime of an electric vehicle to 15 years.

Harvard University researchers have made a breakthrough in battery tech: a long-lasting solid-state lithium battery.

“A lithium-metal battery is considered the holy grail for battery chemistry,” researcher Xin Li told the Harvard Gazette.

Strong, cheaper, faster: Most of today’s electric vehicles (EVs) are powered by lithium-ion batteries, the same type of battery you’ll find in your laptop or smartphone.

These batteries degrade quickly and take a long time to charge. They also sometimes catch on fire — all features that can dissuade people from switching to an EV.

Harvard claims its new solid-state lithium battery can be charged and discharged at least 10,000 times. That could increase the life expectancy of an EV battery to 15 years — currently, most are only warranted for 8 years or 100,000 miles.

The battery could also allow people to fully charge their EVs in just 10 to 20 minutes.

Battery basics: Batteries have four main components: a cathode (positively charged), an anode (negatively charged), a separator (so they don’t touch), and an electrolyte (a liquid or gel that carries the current from one side to the other).

When the battery is in use, ions in the electrolyte move from the anode to the cathode, creating an electric current to power a device. When the battery is charging, they move back to the anode.

The challenge: A solid-state lithium battery replaces the liquid electrolyte with one made of a solid material, usually some type of ceramic. It also replaces the heavy anode, usually made from graphite, with a lighter one made of lithium metal and just a coating of graphite.

These changes reduce the risk of fire and allow the battery to charge more quickly and hold more energy.

However, needle-like structures called dendrites can form on the anode of a solid-state lithium battery. The little spikes can then pierce through the ceramic, causing the battery to short circuit.

Our strategy to stabilize the battery feels counterintuitive.


Luhan Ye

How it works: To avoid this issue, the Harvard team developed a solid-state battery with two different electrolytes: one that’s prone to dendrite penetration but more stable, and the other that’s less stable but dendrite-proof.

They sandwiched this second type of electrolyte between layers of the first. Dendrites could then penetrate the layers containing the first electrolyte, but because they couldn’t breach the layer containing the second, they couldn’t cause the battery to short circuit.

“Our strategy of incorporating instability in order to stabilize the battery feels counterintuitive but just like an anchor can guide and control a screw going into a wall, so too can our multilayer design guide and control the growth of dendrites,” co-author Luhan Ye explained.

As a bonus, the chemistry of Harvard’s solid-state lithium battery causes it to fill any holes caused by the dendrites, meaning it essentially heals itself.

Battery companies say one thing, automakers say another thing.


Xin Li

The cold water: Harvard has only made a coin-sized prototype of its solid-state, lithium-metal battery so far. To power a vehicle, we’d need something about the size of a textbook — and getting to that point won’t be easy.

“Scaling up to EVs is not a trivial problem — there are many engineering aspects we’ll have to figure out later,” Li told IEEE Spectrum.

As for when anyone might be able to buy an EV containing Harvard’s solid-state lithium battery, that depends who you ask, according to Li.

“Battery companies say one thing, automakers say another thing,” he said. “My guess is five to 10 years.”

We’d love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Related
Chevrolet is electrifying the Corvette
GM has announced plans to bring the Corvette roaring into the electric vehicle market.
hypoint hydrogen aircraft
This hydrogen aircraft could really work
California startup HyPoint plans to make a hydrogen-powered aircraft with nearly three times the range of a turboprop commuter jet. 
The next big disruption is coming: How cities can prepare for flying cars
Urban Aerial Mobility – or ‘flying cars’ – could present a more flexible way for cities to invest in future infrastructure.
Bioluminescent bacteria will soon light up this French street
French commune Rambouillet is serving as a testing ground for the soft glow of bioluminescent bacteria on the street.
This solar-powered motorhome was designed by students 
Students from the Technical University of Eindhoven in the Netherlands have created a solar-powered motorhome, shaped like a huge teardrop.
Up Next
self-driving tractor
Subscribe to Freethink for more great stories