Skip to main content
Move the World.
Breast Cancer Treatment

Lead Image © Arcyto/ Adobe Stock

Triple negative breast cancer (TNBC) is relatively rare, accounting for just 15% of all breast cancer diagnoses — but it's also incredibly aggressive, rapidly spreading throughout the body.

This kind of cancer is missing three common targets for breast cancer drugs, making it more difficult to treat.

Now, Tulane University researchers have discovered a gene that can serve as an "off switch" for TNBC, potentially leading to a new breast cancer treatment.

Targeting TNBC

TNBC gets its name from the fact that the breast cancer cells test negative for estrogen receptors, progesterone receptors, and excess production of a protein called HER2.

That means TNBC won't respond to a breast cancer treatment that targets those hormones or that protein, which typically leaves only surgery, radiation therapy, and/or chemotherapy on the table as treatment options.

For their study, published in the journal Scientific Reports, Tulane researchers wanted to determine how two human genes — Rab27a and TRAF3IP2 — affect the formation of TNBC.

To do that, they injected mouse models with TNBC cells. After confirming tumor growth, they then used a virus to deliver a molecule of RNA to the genes from functioning.

New Breast Cancer Treatment

When the researchers inhibited Rab27a, they found that it stopped tumors from growing, but it didn't stop tiny amounts of cancer cells from spreading to other parts of a mouse's body.

The gene suppressed the spread of cancer cells for a year after treatment and shrank tumors to undetectable levels.

Inhibiting TRAF3IP2, however, not only suppressed the spread of cancer cells for a year after treatment, but also shrank existing tumors to undetectable levels.

"This exciting discovery has revealed that TRAF3IP2 can play a role as a novel therapeutic target in breast cancer treatment," researcher Reza Izadpanah said in a news release.

Of course, as with any animal study, this one comes with the caveat that treatments that work in mice often don't work in humans.

To find out whether that's the case with this "off switch" for TNBC, the Tulane researchers are now attempting to secure FDA approval to begin clinical trials.

The Future of Gene Therapy

This Tulane study is far from the first to identify potential ways to target our own genes in the battle against disease — and some of these gene therapies are already being used to treat humans.

The Tulane researchers are now attempting to secure FDA approval to begin clinical trials.

In 2017, the FDA issued an approval for Kymriah, a gene therapy developed by Swiss pharmaceutical company Novartis, making it the first gene therapy cleared for use in the U.S.

Since then, the agency has approved a handful of other gene therapies, but the number could soon increase dramatically — in December, former FDA commissioner Scott Gottlieb said that he expects the FDA will be approving between 10 and 20 new gene therapies every year by 2025.

If the Tulane team is able to reproduce the results of its mouse study in humans, a TRAF3IP2-focused breast cancer treatment could be one of them.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Up Next

INTEL
Why Cancer Patients Should Get Genetic Sequencing
Why Cancer Patients Should Get Genetic Sequencing
Watch Now
INTEL
Why Cancer Patients Should Get Genetic Sequencing
Genomic sequencing saved his live. Now he wants everyone to have access.
Watch Now

After he was diagnosed with life-threatening prostate cancer, Intel’s Bryce Olson sequenced his genome which offered clues to new treatments for his disease. While the current standard of care for cancer patients includes surgery, radiation, and chemotherapy, genetic sequencing opens the door for new possibilities beyond these traditional approaches. Bryce explains his personal mission to encourage others to get their...

Superhuman
The Promise of Gene Therapy
The Promise of Gene Therapy
Watch Now
Superhuman
The Promise of Gene Therapy
When Karen was told her daughter had an incurable disease, she started a gene therapy company to find a cure.
Watch Now

When doctors told Karen there was no cure for her daughter’s brain disease, she took matters into her own hands. With no scientific background, she created a gene therapy business that can fix the faulty genes in patients like her daughter. Now she’s racing against the clock to extend her daughter’s life and improve the lives of others.

Dispatches
FDA Approves First Mute Button for Genetic Diseases
FDA Approves First Mute Button for Genetic Diseases
Dispatches
FDA Approves First Mute Button for Genetic Diseases
It is the first of "a wave of advances that have the potential to transform medicine."

It is the first of "a wave of advances that have the potential to transform medicine."

Superhuman
Reprogramming Your Immune System to Fight Cancer
Reprogramming Your Immune System to Fight Cancer
Watch Now
Superhuman
Reprogramming Your Immune System to Fight Cancer
Your T cells already know how to kill cancer. These doctors can train them to hunt it down.
Watch Now

Josh Feldman was on his honeymoon when he felt a lump on his neck. Returning home after the best month of his life, his doctor gave him the news: non-Hodgkin's lymphoma. There was no cure, and it was about to get much worse. After multiple rounds of chemotherapy failed to stop his tumors from growing, Josh went to see Dr. John Timmerman, an oncologist at UCLA who is trying something different, known as immunotherapy. This...

Dispatches
Glowing Cancer Cells Could Find Hidden Tumors (And Replace Mammograms)
Glowing Cancer Cells Could Find Hidden Tumors (And Replace Mammograms)
Dispatches
Glowing Cancer Cells Could Find Hidden Tumors (And Replace Mammograms)
A new pill can make cancer cells glow under infrared light, and it could eliminate for mammograms.

A new pill can make cancer cells glow under infrared light, and it could eliminate for mammograms.

Dispatches
Precision Medicine Cured an “Untreatable” Stage IV Breast Cancer
Precision Medicine Cured  an “Untreatable” Stage IV Breast Cancer
Dispatches
Precision Medicine Cured an “Untreatable” Stage IV Breast Cancer
Two years ago, she had two months to live.

Two years ago, she had two months to live.

Why Advanced Cancer Patients Need Genetic Sequencing
Why Advanced Cancer Patients Need Genetic Sequencing
Watch Now
Why Advanced Cancer Patients Need Genetic Sequencing
Genomic sequencing saved his life. Now he wants everyone to have access.
Watch Now

After he was diagnosed with life-threatening prostate cancer, Intel’s Bryce Olson sequenced his genome which offered clues to new treatments for his disease. While the current standard of care for cancer patients includes surgery, radiation, and chemotherapy, genetic sequencing opens the door for new possibilities beyond these traditional approaches. Bryce explains his personal mission to encourage others to get their...

Dispatches
23andMe Can (Finally) Tell You about Your Genetic Cancer Risk
23andMe Can (Finally) Tell You about Your Genetic Cancer Risk
Dispatches
23andMe Can (Finally) Tell You about Your Genetic Cancer Risk
23andMe has won the right to tell you what your genes say about you. It's a landmark legal achievement that could...

23andMe has won the right to tell you what your genes say about you. It's a landmark legal achievement that could help usher in a new age of personalized medicine.

Intel
The Future of Cancer Research
The Future of Cancer Research
Watch Now
Intel
The Future of Cancer Research
Intel's Bryce Olson used genomic sequencing to help fight his cancer. Now he’s helping researchers use artificial intelligence to discover entirely new cancer treatments.
Watch Now

Intel employee Bryce Olson was diagnosed with stage 4 prostate cancer. When the standard of care didn’t work, Bryce turned to genomic sequencing which allowed his doctors to identify specific genetic drivers of his disease and specific treatments and clinical trials that were a fit for his cancer. This precision medicine approach helped send his cancer into remission for several years. Now that his cancer has returned,...