Skip to main content
Move the World.
Robotic flying insects

Lead image courtesy of Mélanie Jouaiti and Dominique Martinez.

Even with the best fly-swatter skills, a buzzing insect is hard to pin down. Flies can hover, fly sideways and backward, and land upside down.

The acrobatics of flying insects has captivated scientists for decades, but much of the physics of insect flight remains a mystery. The tiny critters are just too damn fast.

But now there is a robot that can keep up.

Researchers from the CNRS, Université de Lorraine, and Inrae built the first cable-driven robot that can follow the movement of free-flying insects. With the robot — essentially a box with cameras, suspended by cables — researchers can capture videos or photos of natural flight behavior right alongside the insect.

Robotic flying insects

The camera tracks the irregular flight pattern of the moth. Credit: Mélanie Jouaiti and Dominique Martinez

Insects might be the most advanced aerialists in the world. They were the first organisms to evolve flight. Most flies flap their wings 200 times each second. Mosquitoes beat theirs three times as fast — so fast they make that pesky humming sound. Mosquitoes can fly about 1.5 mph, while a dragonfly can reach speeds up to 35 mph.

Up until now, researchers had to study their flight using a stationary camera to capture take-off or landing. Some scientists tethered flying insects to a central location, called a flight mill, which allows them to measure flight capability, like speed or distance, in a circular path.

In 2002, Michael Dickinson, a biologist at UC Berkeley captured some of the fly's agility using high-speed video cameras. He filmed the fly doing a maneuver called a saccade — a very rapid body turn. With the high-speed footage, Dickinson was able to break down the maneuver's elements. Then, in 2014, scientists from the University of Oxford tethered a blowfly to a vertical mount and used x-rays to film inside its body during flight.

Robotic flying insects

With tracking and stabilization abilities, the camera can film the moth in detail. Credit: Mélanie Jouaiti and Dominique Martinez

But to follow the irregular pattern of flying insects from take-off to landing and anywhere in between — well, it is no small task. This new robot could change that.

The researchers tested their robot with the Agrotis ipsilon, a common migratory moth found on nearly every continent. They equipped the robot with cameras and a controller to minimize tracking errors and followed the 2 cm moth up to a speed of 3 meters/second.

Their work, published in Science Robotics on 10 June, will help scientists understand flying insects' locomotion and orientation strategies and how visual, olfactory, and other senses stimulate flight behavior.

Up Next

Uprising
Robot Bees Could One Day Save Your Life
robot bees
Uprising
Robot Bees Could One Day Save Your Life
For the first time, a microbot powered by soft actuators has achieved controlled flight.

For the first time, a microbot powered by soft actuators has achieved controlled flight.

Why Researchers Built a Robot Snake
Why Researchers Built a Robot Snake
Watch Now
Why Researchers Built a Robot Snake
Believe it or not, there's a good reason this robot snake exists
Watch Now

When building robots, scientists often struggle to perfect the robot's movements. They turn to the natural world in order to solve this problem, finding inspiration from animals such as spiders, dogs, and even humans. However, studies show that even though we live in a world that is largely built for humans, robots that appear to be too "human-like" make people uneasy. Thus, researchers at Carnegie Melon developed a...

Aflac
The Robot Duck Helping Kids With Cancer
The Robot Duck Helping Kids With Cancer
Watch Now
Aflac
The Robot Duck Helping Kids With Cancer
Nation of Artists and Freethink are proud to partner with Aflac, Sproutel and Carol Cone On Purpose for the launch...
Watch Now

Nation of Artists and Freethink are proud to partner with Aflac, Sproutel and Carol Cone On Purpose for the launch of My Special Aflac Duck, a social robot designed to bring comfort and joy to kids with cancer, and already the winner of the Tech for a Better World Innovation Award at CES 2018, Engadget’s official Best of CES Awards for Best Unexpected Product, and the CES Showstoppers Award for Best Robotics.

Mysteries of Science
What Is Static Electricity? We May Finally Have an Answer.
Schematics showing the flow of electricity in two common static electricity experiences. Illustration by Teresa Stanton.
Mysteries of Science
What Is Static Electricity? We May Finally Have an Answer.
This model, created by doctoral students, provides a convincing explanation for a mystery that is thousands of years old - the cause of static electricity.

This model, created by doctoral students, provides a convincing explanation for a mystery that is thousands of years old - the cause of static electricity.

Seachange
Researchers Found a Species of Stony Coral Ready to Withstand Climate Change
Researchers Found a Species of Stony Coral Ready to Withstand Climate Change
Seachange
Researchers Found a Species of Stony Coral Ready to Withstand Climate Change
At current trends, more than 90% of the world’s coral reefs will be massively degraded by 2050. Researchers have found a species of stoney coral that has sparked new efforts for coral reef restoration.

At current trends, more than 90% of the world’s coral reefs will be massively degraded by 2050. Researchers have found a species of stoney coral that has sparked new efforts for coral reef restoration.

On the Fringe
Could Freezing Your Body Offer a Chance at Immortality?
freezing your body
On the Fringe
Could Freezing Your Body Offer a Chance at Immortality?
In a lab in Arizona, dozens of bodies sit preserved at 320 degrees below zero. They each paid $200,000 to be frozen...
By Blake Snow

In a lab in Arizona, dozens of bodies sit preserved at 320 degrees below zero. They each paid $200,000 to be frozen on the hope that, one day, medicine will advance far enough to once again bring them back from the dead.

Dispatches
Scientists Physically "Transplant" a Memory in Snails
Scientists Physically
Dispatches
Scientists Physically "Transplant" a Memory in Snails
The experiment breaks the conventional wisdom about what memories are made of.

The experiment breaks the conventional wisdom about what memories are made of.

DIY
Treating Diabetes with a DIY Pancreas
Treating Diabetes with a DIY Pancreas
Watch Now
DIY
Treating Diabetes with a DIY Pancreas
A group of coders created an open source, DIY pancreas to help people with diabetes manage their condition.
Watch Now

Diabetes is a high maintenance and high stakes disease requiring constant monitoring and precise decision-making. What if we could outsource that workload to a machine? That’s what one couple decided to do. They made a homemade pancreas that eases the burden of diabetes care… and then released the design to the public for free.