Skip to main content
Move the World.
"Cybersecurity for Plants" Can Stop Germs from Hacking Our Food Supply

Plants feed us. Without them we’re goners. Through thousands of years of genetic modification by selective breeding, humans have developed the crops that keep us alive. We have large kernels of grains, plump fruits and nutritious, toxin-free vegetables. These forms would never be found in nature, but were bred by people to keep us healthy and happy.

Unfortunately, microbes find our wonderfully productive food plants just as delicious as we do. These plant pathogens cause diseases that have changed world history and still affect us today.

These pathogens are plant hackers. Just like computer hackers, they’re specialized infiltrators, adept in stealth and disruption. The methods are the same, too: shut down defenses and access the target’s resources. Once they’re in, plant pathogens eat all they can and reproduce wildly. Computer hackers desire wealth or information, but the plant hackers are after our food. Up to 25 percent of crops globally are lost to diseases before they reach market.

On the left, corn and its wild ancestor <em>teosinte</em> show how selective breeding has modified plants to suit human needs. On the right, corn infected with ergot disease shows that we're not the only ones living off our crops.

On the left, corn and its wild ancestor teosinte show how selective breeding has modified plants to suit human needs. On the right, corn infected with ergot disease shows that we're not the only ones living off our crops. Credit: Nicolle Rager Fuller, NSF (left);
gailhampshire (right)

Oomycetes on the attack

The most infamous and cunning plant hackers are the oomycetes. The Irish Potato Famine in the 1840s was caused by the oomycete Phytophthora, Greek for "plant destroyer." This biological disaster led to the emigration of millions of people to the United States, and changed both countries forever. Even today, oomycetes and the rest of the plant pathogens remain a barrier to global food security, contribute to malnutrition and cost billions of dollars in losses annually.

The oomycetes are a strange product of evolution. They look and behave like fungi; hence their Greek name "egg-fungus." It wasn't until the advent of gene sequencing that researchers correctly identified the oomycetes as a relative of algae, not fungi. Oomycetes start as single microscopic spores that infiltrate plant leaves or roots undetected. Once inside, they establish a perverse connection with the host plant's cells. The hackers gain access and can mess around with anything they want – from switching off the plant's security systems to breaking into stores of plant nutrients.

Evolution has given the oomycetes a repertoire of toxins and proteins that converge on hubs of the plant immune system to disable it. Plants can fight back against these attacks if they recognize oomycete-specific chemicals or the hackers' toxins. But detection is difficult and fleeting. The oomycetes hackers have genomes built for evolution. Core genes for metabolism and growth mutate and change at a normal pace. However, genes for toxins, and those that control infection are positioned to rearrange, combine or be turned off after a single generation. These new forms evolve so quickly that they baffle the slow-to-change plant immune system. This "two-speed genome" means the oomycetes always have a leg up on plant immune detection. When farmers use genetically identical crops year-to-year, oomycetes don't take long to evolve around plants' defenses.

So how do researchers and growers stop the plant hackers and help crops? Despite the cost and drawbackspesticide has been an important tool to control plant disease.

The blue-stain shows the omycete
pathogen infecting plant root cells.

The blue-stain shows the omycete
pathogen infecting plant root cells. Credit: John Herlihy

Farmers try to use minimum effective amounts of fungicide, which helps lower the chance oomycetes will develop resistance. For instance, the Cucurbit Downy Mildew Forecast Service in Georgia combines reports of disease with weather forecasts to predict the likely path of disease spread. This allows growers to minimize sprays by sticking to high risk periods.

But it would be nice to have other weapons in the arsenal to fight off these plant hackers.

Getting rid of exploitable loopholes

In the McDowell lab where I research here at Virginia Tech, we look for new ways to combat oomycete diseases.

Computer hackers rely on exploiting flaws in code to access systems and take what they want. Oomycetes work the same way, using their host to achieve their ends. For instance, plant diseases activate natural plant pumps to supply sugar for their own growth. Some oomycetes have lost the capacity to produce critical nutrients, meaning they rely on their plant host to do it for them. Without the plant host susceptibilities, the pathogen would starve before the plant got sick.

My colleagues and I study oomycete disease in the model plant Arabidopsis, more commonly called thale cress. This weed is only grown in laboratories, but, like lab mice for humans, provides a tool to understand what goes on in our fields, orchards and gardens.

We focus on the relationships between plants and pathogens, looking for other ways oomycetes exploit their hosts. If we can identify the mechanisms of plant cell machinery that a pathogen requires to cause disease, we can breed or engineer plants to change, turn off or get rid of those vulnerabilities.

We test plants that have been genetically manipulated to turn off individual genes related to nutrient uptake, transport, storage and regulation. We infect these modified plants and look for any that are more resistant than their normal relatives.

Arabidopsis seedlings before and after
oomycetes infection. The white hairs on
the infected plant on the right are
spore-producing reproductive structures;
the pillowy appearance gave the pathogen
its name, downy mildew.

Arabidopsis seedlings before and after
oomycetes infection. The white hairs on
the infected plant on the right are
spore-producing reproductive structures;
the pillowy appearance gave the pathogen
its name, downy mildew. Credit: John Herlihy

Often the removal of a gene is detrimental to the plant and the disease suffers as well. But occasionally we find a test plant that, despite its inactive gene, does just fine – and is less susceptible to the disease. Potentially, those plants lack a key component the pathogen requires to survive and grow. Finding those susceptibility genes and closing those exploitable holes in plant defense is my goal.

Looking forward, there is hope that research can diminish the impact of plant diseases. Like a computer, no plant defense system is perfect. However, if loopholes can be closed, hackers will have a much tougher time accessing what they're after. Both breeding and genetic engineering provide paths to close those loopholes that may also exist in the vegetable crops that are most affected by plant hacking.

Even if everyone on Earth had enough to eat, a growing population, increased demand for meat, and a need for more fresh produce necessitates growing more food. This can either come from more farmland or more efficient farms. Strategies that employ limited pesticideuse along with plants that are more resilient to the pathogen hackers could make the farms we have more productive.

John Herlihy is a Ph.D. Student in the School of Plant and Environmental Science at Virginia Tech. This piece first appeared in The Conversation.

The Conversation

Up Next

A Greener Future
A “Death-Ray” for Weeds Could Replace Chemical Weed Killers
A “Death-Ray” for Weeds Could Replace Chemical Weed Killers
A Greener Future
A “Death-Ray” for Weeds Could Replace Chemical Weed Killers
Dr. Graham Brodie of the University of Melbourne is working on a device for zapping stubborn weeds with microwaves.

Dr. Graham Brodie of the University of Melbourne is working on a device for zapping stubborn weeds with microwaves.

Medicine
RNA Vaccines Could Change Everything in the Fight Against Disease
RNA Vaccines Could Change Everything in the Fight Against Disease
Medicine
RNA Vaccines Could Change Everything in the Fight Against Disease
Traditional methods of vaccination have come up against difficult challenges. They can also be expensive and time-consuming to produce. New RNA vaccines are faster, cheaper, and safer, and show great potential to meet evolving threats.

Traditional methods of vaccination have come up against difficult challenges. They can also be expensive and time-consuming to produce, curtailing efforts to control outbreaks or head off a flu season caused by an unexpected strain. A newer type of vaccines, using RNA, could alleviate these issues. Faster, cheaper, and safer, RNA vaccines show great potential to meet evolving threats.

Dispatches
We're Mapping 100 Trillion Human Cells (and All of Their Genes)
We're Mapping 100 Trillion Human Cells (and All of Their Genes)
Dispatches
We're Mapping 100 Trillion Human Cells (and All of Their Genes)
The "Human BioMolecular Atlas" will map the active genes in over 200 types of cells and 80 different organ systems.
By Mark Atkinson

The "Human BioMolecular Atlas" will map the active genes in over 200 types of cells and 80 different organ systems.

Dispatches
23andMe Can (Finally) Tell You about Your Genetic Cancer Risk
23andMe Can (Finally) Tell You about Your Genetic Cancer Risk
Dispatches
23andMe Can (Finally) Tell You about Your Genetic Cancer Risk
23andMe has won the right to tell you what your genes say about you. It's a landmark legal achievement that could...

23andMe has won the right to tell you what your genes say about you. It's a landmark legal achievement that could help usher in a new age of personalized medicine.

Aflac
The Robot Duck Helping Kids With Cancer
The Robot Duck Helping Kids With Cancer
Watch Now
Aflac
The Robot Duck Helping Kids With Cancer
Nation of Artists and Freethink are proud to partner with Aflac, Sproutel and Carol Cone On Purpose for the launch...
Watch Now

Nation of Artists and Freethink are proud to partner with Aflac, Sproutel and Carol Cone On Purpose for the launch of My Special Aflac Duck, a social robot designed to bring comfort and joy to kids with cancer, and already the winner of the Tech for a Better World Innovation Award at CES 2018, Engadget’s official Best of CES Awards for Best Unexpected Product, and the CES Showstoppers Award for Best Robotics.

Coded
It’s Time for Regular Americans to Think Differently About Cybersecurity
It’s Time for Regular Americans to Think Differently About Cybersecurity
Coded
It’s Time for Regular Americans to Think Differently About Cybersecurity
If huge companies and government agencies can't manage the cyber threats, how can ordinary Americans?
By James Poulos

If huge companies and government agencies can't manage the cyber threats, how can ordinary Americans?

The New Space Race
Can We Make It In Space?
Can We Make It In Space?
Watch Now
The New Space Race
Can We Make It In Space?
What if one day, everything in space was made in space? 3D printing may hold the answer.
Watch Now

NASA intern turned Silicon Valley entrepreneur, Jason Dunn, saw what was holding humans back from colonizing outer space...and decided to do something about it. With his company Made in Space’s cutting-edge 3D printer, astronauts can break their reliance on costly resupply missions from Earth and—for the first time ever—build new supplies for themselves in space. Dunn and his team believe their invention will usher in a new...

Superhuman
The 3D-printed helmet that can read your mind. Could it change the world?
The 3D-printed helmet that can read your mind. Could it change the world?
Superhuman
The 3D-printed helmet that can read your mind. Could it change the world?
OpenBCI has developed technology that allows you to control the world outside your body with your brain waves.
By Mike Riggs

OpenBCI has developed technology that allows you to control the world outside your body with your brain waves.

Superhuman
Open Sourcing the Brain
Open Sourcing the Brain
Watch Now
Superhuman
Open Sourcing the Brain
Open BCI has developed a 3D-printed headset that allows your brain to interact with computers in amazing ways.
Watch Now

OpenBCI has developed a 3D-printed headset that allows our brains to interact with software. Want to measure the effect of meditation on your brain? It's possible. Want to control a prosthetic limb with your mind? It's possible. Right now, the only thing OpenBCI's tech can't do are the things we haven't thought of.