Skip to main content
Move the World.

Plants feed us. Without them we’re goners. Through thousands of years of genetic modification by selective breeding, humans have developed the crops that keep us alive. We have large kernels of grains, plump fruits and nutritious, toxin-free vegetables. These forms would never be found in nature, but were bred by people to keep us healthy and happy.

Unfortunately, microbes find our wonderfully productive food plants just as delicious as we do. These plant pathogens cause diseases that have changed world history and still affect us today.

These pathogens are plant hackers. Just like computer hackers, they’re specialized infiltrators, adept in stealth and disruption. The methods are the same, too: shut down defenses and access the target’s resources. Once they’re in, plant pathogens eat all they can and reproduce wildly. Computer hackers desire wealth or information, but the plant hackers are after our food. Up to 25 percent of crops globally are lost to diseases before they reach market.

On the left, corn and its wild ancestor <em>teosinte</em> show how selective breeding has modified plants to suit human needs. On the right, corn infected with ergot disease shows that we're not the only ones living off our crops.
On the left, corn and its wild ancestor teosinte show how selective breeding has modified plants to suit human needs. On the right, corn infected with ergot disease shows that we're not the only ones living off our crops. Credit: Nicolle Rager Fuller, NSF (left); gailhampshire (right)

Oomycetes on the attack

The most infamous and cunning plant hackers are the oomycetes. The Irish Potato Famine in the 1840s was caused by the oomycete Phytophthora, Greek for "plant destroyer." This biological disaster led to the emigration of millions of people to the United States, and changed both countries forever. Even today, oomycetes and the rest of the plant pathogens remain a barrier to global food security, contribute to malnutrition and cost billions of dollars in losses annually.

The oomycetes are a strange product of evolution. They look and behave like fungi; hence their Greek name "egg-fungus." It wasn't until the advent of gene sequencing that researchers correctly identified the oomycetes as a relative of algae, not fungi. Oomycetes start as single microscopic spores that infiltrate plant leaves or roots undetected. Once inside, they establish a perverse connection with the host plant's cells. The hackers gain access and can mess around with anything they want – from switching off the plant's security systems to breaking into stores of plant nutrients.

Evolution has given the oomycetes a repertoire of toxins and proteins that converge on hubs of the plant immune system to disable it. Plants can fight back against these attacks if they recognize oomycete-specific chemicals or the hackers' toxins. But detection is difficult and fleeting. The oomycetes hackers have genomes built for evolution. Core genes for metabolism and growth mutate and change at a normal pace. However, genes for toxins, and those that control infection are positioned to rearrange, combine or be turned off after a single generation. These new forms evolve so quickly that they baffle the slow-to-change plant immune system. This "two-speed genome" means the oomycetes always have a leg up on plant immune detection. When farmers use genetically identical crops year-to-year, oomycetes don't take long to evolve around plants' defenses.

So how do researchers and growers stop the plant hackers and help crops? Despite the cost and drawbackspesticide has been an important tool to control plant disease.

The blue-stain shows the omycete
pathogen infecting plant root cells.
The blue-stain shows the omycete pathogen infecting plant root cells. Credit: John Herlihy

Farmers try to use minimum effective amounts of fungicide, which helps lower the chance oomycetes will develop resistance. For instance, the Cucurbit Downy Mildew Forecast Service in Georgia combines reports of disease with weather forecasts to predict the likely path of disease spread. This allows growers to minimize sprays by sticking to high risk periods.

But it would be nice to have other weapons in the arsenal to fight off these plant hackers.

Getting rid of exploitable loopholes

In the McDowell lab where I research here at Virginia Tech, we look for new ways to combat oomycete diseases.

Computer hackers rely on exploiting flaws in code to access systems and take what they want. Oomycetes work the same way, using their host to achieve their ends. For instance, plant diseases activate natural plant pumps to supply sugar for their own growth. Some oomycetes have lost the capacity to produce critical nutrients, meaning they rely on their plant host to do it for them. Without the plant host susceptibilities, the pathogen would starve before the plant got sick.

My colleagues and I study oomycete disease in the model plant Arabidopsis, more commonly called thale cress. This weed is only grown in laboratories, but, like lab mice for humans, provides a tool to understand what goes on in our fields, orchards and gardens.

We focus on the relationships between plants and pathogens, looking for other ways oomycetes exploit their hosts. If we can identify the mechanisms of plant cell machinery that a pathogen requires to cause disease, we can breed or engineer plants to change, turn off or get rid of those vulnerabilities.

We test plants that have been genetically manipulated to turn off individual genes related to nutrient uptake, transport, storage and regulation. We infect these modified plants and look for any that are more resistant than their normal relatives.

Arabidopsis seedlings before and after
oomycetes infection. The white hairs on
the infected plant on the right are
spore-producing reproductive structures;
the pillowy appearance gave the pathogen
its name, downy mildew.
Arabidopsis seedlings before and after oomycetes infection. The white hairs on the infected plant on the right are spore-producing reproductive structures; the pillowy appearance gave the pathogen its name, downy mildew. Credit: John Herlihy

Often the removal of a gene is detrimental to the plant and the disease suffers as well. But occasionally we find a test plant that, despite its inactive gene, does just fine – and is less susceptible to the disease. Potentially, those plants lack a key component the pathogen requires to survive and grow. Finding those susceptibility genes and closing those exploitable holes in plant defense is my goal.

Looking forward, there is hope that research can diminish the impact of plant diseases. Like a computer, no plant defense system is perfect. However, if loopholes can be closed, hackers will have a much tougher time accessing what they're after. Both breeding and genetic engineering provide paths to close those loopholes that may also exist in the vegetable crops that are most affected by plant hacking.

Even if everyone on Earth had enough to eat, a growing population, increased demand for meat, and a need for more fresh produce necessitates growing more food. This can either come from more farmland or more efficient farms. Strategies that employ limited pesticideuse along with plants that are more resilient to the pathogen hackers could make the farms we have more productive.

John Herlihy is a Ph.D. Student in the School of Plant and Environmental Science at Virginia Tech. This piece first appeared in The Conversation.

The Conversation

More About

A New Reality
How to Spot a Deepfake
How to Spot a Deepfake
Watch Now
A New Reality
How to Spot a Deepfake

Is artificial intelligence the key to knowing what’s real?

Watch Now

Deepfake videos use video manipulation to show people saying and doing things they never have. These engineers are using blockchain technology to separate fact from fiction.

Deepfakes, fake videos generated using artificial intelligence technology, could be the next frontier in misinformation. While news video has historically been the gold standard of veracity, an era where video can be easily created could further erode trust in information and media. Deepfakes of…

Sponsored
Why Cancer Patients Should Get Genetic Sequencing
Why Cancer Patients Should Get Genetic Sequencing
Watch Now
Sponsored
Why Cancer Patients Should Get Genetic Sequencing

Genomic sequencing saved his live. Now he wants everyone to have access.

Watch Now

After he was diagnosed with life-threatening prostate cancer, Intel’s Bryce Olson sequenced his genome which offered clues to new treatments for his disease. While the current standard of care for cancer patients includes surgery, radiation, and chemotherapy, genetic sequencing opens the door for new possibilities beyond these traditional approaches. Bryce explains his personal mission to encourage others to get their genome sequenced, how to do it, and why cancer patients…

Dispatches
To Eradicate TB, We Need Old-Fashioned Ambition
To Eradicate TB, We Need Old-Fashioned Ambition
Dispatches
To Eradicate TB, We Need Old-Fashioned Ambition

The Ebola outbreak sparked more medical innovation in two years than TB has in decades, even though TB is killing…

By Madhukar Pai

The Ebola outbreak sparked more medical innovation in two years than TB has in decades, even though TB is killing millions of people a year.

Dispatches
Zika Could Be a "Smart Missile" for Brain Cancer
Zika Could Be a "Smart Missile" for Brain Cancer
Dispatches
Zika Could Be a "Smart Missile" for Brain Cancer

Zika can devastate fetal brains; scientists want to turn it against brain tumors instead.

By Dan Bier

Zika can devastate fetal brains; scientists want to turn it against brain tumors instead.

Superhuman
Helping Kids Walk With Wearable Robots
Helping Kids Walk With Wearable Robots
Watch Now
Superhuman
Helping Kids Walk With Wearable Robots

Exoskeletons aren't just science fiction anymore. Wearable robots are helping kids with cerebral palsy walk.

Watch Now

Cerebral palsy (CP) is the most common movement disorder in children, and nearly half of kids with CP can't walk own their own. As bones grow and muscles set incorrectly, walking becomes progressively more difficult. Extensive and repeated surgeries are often required to provide relief, but they can't solve the underlying problem.

Now, engineers in the Biomechatronics Lab at Northern Arizona University are hoping that robots can lend a hand.…

On the Fringe
Could Freezing Your Body Offer a Chance at Immortality?
Could Freezing Your Body Offer a Chance at Immortality?
On the Fringe
Could Freezing Your Body Offer a Chance at Immortality?

In a lab in Arizona, dozens of bodies sit preserved at 320 degrees below zero. They each paid $200,000 to…

By Blake Snow

In a lab in Arizona, dozens of bodies sit preserved at 320 degrees below zero. They each paid $200,000 to be frozen on the hope that, one day, medicine will advance far enough to once again bring them back from the dead.

The App That Sniffs Out Censorship
The App That Sniffs Out Censorship
The App That Sniffs Out Censorship

Created by the Tor Project, the app gives internet users a new way to monitor and report online censorship around…

By Michael O'Shea

Created by the Tor Project, the app gives internet users a new way to monitor and report online censorship around the world.

The New Space Race
The Market for Tiny Satellites Is Going to Be Huge
The Market for Tiny Satellites Is Going to Be Huge
The New Space Race
The Market for Tiny Satellites Is Going to Be Huge

Fleets of small satellites can gather far more accurate and timely data than conventional satellites. And investors are taking notice.

By Mike Riggs

Fleets of small satellites can gather far more accurate and timely data than conventional satellites. And investors are taking notice.

The New Space Race
Can XCOR Build the World's First Airline for Space?
Can XCOR Build the World's First Airline for Space?
The New Space Race
Can XCOR Build the World's First Airline for Space?

Out of a small hangar in the Mojave Desert, XCOR is developing a rocket ship designed to fly to space…

By Freethink Team

Out of a small hangar in the Mojave Desert, XCOR is developing a rocket ship designed to fly to space four times a day, five days a week.