First neuron-level map of a monkey brain revealed

It took just 100 hours to produce the groundbreaking image.

Chinese researchers have produced the first high-resolution 3D image of an entire macaque monkey brain — an achievement that could have huge implications for the treatment of human diseases.

The challenge: The human brain is incredibly complex, with an estimated 86 billion nerve cells. If we can map all of those cells and the connections between them in a healthy brain, we could use that as a guide for understanding brain disorders.

However, because the brain is so complex, no one has been able to produce such an image — there’s just too much data to collect and process. The best we can do are high-resolution images of small parts of the brain or lower-resolution images of the whole thing.

“It represents a tour de force in this rapidly moving field.”

Wang Xiaojing

What’s new: We are getting closer to the holy grail of a high-res human brain map, though — in July, U.S. researchers announced that they’d imaged an entire mouse brain at the micron level (a micron is 1/10,000 of a centimeter).  

Now, a Chinese team has imaged a whole monkey brain — which is 200 times larger by volume and a better model for the human brain — at that same resolution.

Mapping a monkey brain: To produce their monkey brain image, the researchers first injected the animal with a virus modified to produce a fluorescent protein in its neurons. This made it easier to image the inner structures of the monkey’s brain cells.

In an autopsy, the researchers removed its brain, divided it into 250 slices, and imaged each one with a laser scanner. They then used AI-powered software, co-developed with MIT and UCLA, to stitch the slices together to produce the 3D model.

Examples from the new monkey brain model. Credit: Chinese Academy of Sciences

The whole process — slicing, imaging, reconstructing — took less than 100 hours, according to the researchers’ paper, published in Nature Biotechnology.

“[This work] represents a tour de force in this rapidly moving field,” Wang Xiaojing, a New York University neuroscientist who wasn’t involved in the study, commented in a news release.

Looking ahead: The scientists hope that the monkey brain model will prove useful for research into Parkinson’s and other brain disorders. 

With further development, they believe their imaging technique could be used to create models of other organs and tissues, too — and maybe even the human brain.

We’d love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at tips@freethink.com.

Related
Here is how your brain understands one voice in a crowd
Researchers from the University of Rochester Medical Center have discovered fresh insight into how the brain might deliberately hear one speaker while shutting out or ignoring another.
long COVID treatment
Researchers are testing neural stimulation as a long COVID treatment
Small pilot trials of two different types of external electrical brain stimulation suggest the technique may work as a long COVID treatment.
Blocking an immune system protein helped mice recover from brain injury
Blocking an immune system molecule that accumulates after traumatic brain injury could significantly reduce the injury’s detrimental effects
jellyfish nervous system
What the ancient, alien jellyfish can tell us about the human brain
The jellyfish nervous system, revealed by glowing genes, may help unlock the secrets of how our own brain evolved.
Brain wrinkles and folds matter – researchers are studying the mechanics of how they form
Brain folding is another poorly understood mechanism of the most complex known structure in the universe.
Up Next
general AI
Subscribe to Freethink for more great stories