Skip to main content
Move the World.
How to Mass Produce Your Own Organs

Lead image by Andrew Brumagen.

This article is an installment of The Future Explored, a weekly guide to world-changing technology. You can get stories like this one straight to your inbox every Thursday morning by subscribing here.

Scientists are printing tiny human organsthousands per hour — to test new drugs that could treat COVID-19.

Why this matters: Testing new drugs can be a pretty lengthy process — on average, it takes 10 years and $2.6 billion. Typically, scientists have to study the drug in petri dishes and lab rats before they can even try it on human beings. (Only 1 in 1,000 drugs ever make it out of the lab into human trials.) While this can help ensure safety, it can also be time-consuming. And time is precious — especially in the midst of a pandemic.

Tiny human organs made in labs, however, offer scientists a way to skip the animal trials and go straight to studying the drugs on actual human tissue — potentially giving patients quicker access to new, life-saving treatments.

Printing thousands of mini-organs means we could run big, statistically significant drug trials — just for you — on multiple different treatment options.

Personalized medicine beyond COVID-19: Mini-organs could also usher in a new era of personalized medicine. Human beings are unique — and drugs often react differently in different people. But if scientists could print a replica of your organ (or, say, tumor), they could see if a certain medication would be effective for your particular health issue. And if they could print thousands of these mini-me organs, they could run big, statistically significant drug trials — just for you — potentially on multiple different treatment options.

Scientists are also hopeful that these replicas could eventually be placed inside a person, eliminating the need for organ donors. Since the replicas could be made from the person's own cells, organ rejection (when the recipients' immune system sees the new organ as a foreign invader and tries to attack it) wouldn't be a problem. It could also be used to grow new skin, crucial for burn victims, bone, cartilage, and even blood vessels.

How it works: Bioprinting, the method for printing these organs, is similar to 3D printing — but instead of plastic or metal, scientists use stem cells and other biological materials that (when encapsulated in a "hydrogel") act as the "ink."

Like any kind of printing, you'll need something to print the bioink on — and in this case, grow on. The foundation for bioprinting is usually a scaffold made of biodegradable materials. The bioink is then printed onto the scaffold layer by layer — like a cake!

No surgery required: Usually, getting anything inside a patient requires invasive surgery. But a recent study suggests maybe not so much for bioprinted body parts. An international team of scientists created a bioink from cartilage cells, which they then injected under the skin of mice. Using near-infrared light and clever genetic engineering, scientists were able to deliver instructions to the cells, ordering them to grow into ears — all without needing to make an incision. (Yeah, kinda weird and creepy on mice, but potentially useful for humans who need ear repair.)

Infecting mini-organs with COVID: We still don't know much about COVID-19's effects on specific organs — but several research groups are hoping these mini-organs can provide us with better insight. Researchers in Boston are infecting mini-lungs to study the body's reaction to the disease — hoping to understand why COVID-19 kills some patients and not others. In May, an international research team used mini-organs to understand how blood vessels and kidneys are affected. A team at Wake Forest is also creating mini-lungs — as well as mini-colons — to test novel treatments.

Challenges: The holy-grail for these mini-organs is to be able to bioprint them on demand for use inside a human body — and we're still years away from that. The human body is extremely complex and being able to replicate it with precision poses lots of challenges — for one, the printers will have to get much faster and more accurate if scientists want to scale up this process for medical use. Two, we're not sure if these printed structures will be able to retain their structure over time once implanted into the body — plus, some of the scaffolding materials currently used could provoke an immune response from the body. There's also limited options for bioink materials — scientists have to have just the right blend of materials that are both degradable and don't pose a health problem but are also strong enough to maintain structural integrity.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Up Next

Coronavirus
Bats May Provide Clues for Treating COVID-19
treating covid 19
Coronavirus
Bats May Provide Clues for Treating COVID-19
Bats have long lives despite playing host to numerous viruses. Three scientists believe bats' immune systems may help develop new ways of treating COVID-19.

Bats have long lives despite playing host to numerous viruses. Three scientists believe bats' immune systems may help develop new ways of treating COVID-19.

Prosthetics
Developing a Better Mind-Controlled Prosthetic Hand
prosthetic hand
Prosthetics
Developing a Better Mind-Controlled Prosthetic Hand
This new technique allows a person to control their prosthetic hand precisely and in real-time by amplifying the nerve signals from their residual limb.

This new technique allows a person to control their prosthetic hand precisely and in real-time by amplifying the nerve signals from their residual limb.

Future of Travel
Coast-To-Coast in 30 Minutes: Solving the Physics of Hypersonic Flight
hypersonic flight
Future of Travel
Coast-To-Coast in 30 Minutes: Solving the Physics of Hypersonic Flight
Researchers are solving big design challenges of hypersonic flight with a surprisingly small wind tunnel, and it could revolutionize commercial air travel.

Researchers are solving big design challenges of hypersonic flight with a surprisingly small wind tunnel, and it could revolutionize commercial air travel.

Drones
New Tech Could Finally Change Drone Regulations for the Better
drone regulations
Drones
New Tech Could Finally Change Drone Regulations for the Better
FAA drone regulations require pilots to have a visual line of sight of their aircraft, but new detect-and-avoid systems could change that.

FAA drone regulations require pilots to have a visual line of sight of their aircraft, but new detect-and-avoid systems could change that.

Global Impact
Uganda Begins Massive New Ebola Vaccine Study
Uganda Begins Massive New Ebola Vaccine Study
Global Impact
Uganda Begins Massive New Ebola Vaccine Study
The Ebola outbreak in the Congo is now the second deadliest on record. How can we stop the devastation? A study in Uganda could hold the key for a new vaccine.

The Ebola outbreak in the Democratic Republic of the Congo is now the second deadliest on record. The epicenter is in North Kivu, a conflict-torn province which shares borders with Rwanda and Uganda. Ugandan Ebola cases were the first to cross borders from the current Congo outbreak. Now, a new trial study in Uganda could hold the key to stopping the spread of this devastating disease.

Dispatches
Are "CRISPR Kids" the New "Test-Tube Babies"?
Are
Dispatches
Are "CRISPR Kids" the New "Test-Tube Babies"?
Forty years later, IVF shows how fears about new technology can fade.
By Patricia Stapleton

Forty years later, IVF shows how fears about new technology can fade.

Can Sleep Deprivation Cure Depression?
Can Sleep Deprivation Cure Depression?
Watch Now
Can Sleep Deprivation Cure Depression?
Losing sleep can have a lot of adverse health effects, but recent science shows it could also have a surprising upside
Watch Now

Studies show that loss of sleep can lead to memory loss, compromised immunity, weight gain, and mood swings. However, scientists are now finding that sleep deprivation may be used to treat depression. Losing sleep has the opposite effect on those struggling with depression. It restores the circadian rhythm that is usually flat in depressed people and it helps balance the parts of the brain that regulate mood. Unfortunately,...

The New Space Race
Can We Make It In Space?
Can We Make It In Space?
Watch Now
The New Space Race
Can We Make It In Space?
What if one day, everything in space was made in space? 3D printing may hold the answer.
Watch Now

NASA intern turned Silicon Valley entrepreneur, Jason Dunn, saw what was holding humans back from colonizing outer space...and decided to do something about it. With his company Made in Space’s cutting-edge 3D printer, astronauts can break their reliance on costly resupply missions from Earth and—for the first time ever—build new supplies for themselves in space. Dunn and his team believe their invention will usher in a new...